DAY 17
知识点
聚类的指标
聚类常见算法:kmeans聚类、dbscan聚类、层次聚类
三种算法对应的流程
实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。
聚类的流程
标准化数据
选择合适的算法,根据评估指标调参( )
KMeans 和层次聚类的参数是K值,选完k指标就确定
DBSCAN 的参数是 eps 和min_samples,选完他们出现k和评估指标
以及层次聚类的 linkage准则等都需要仔细调优。
除了经典的评估指标,还需要关注聚类出来每个簇对应的样本个数,避免太少没有意义。
将聚类后的特征添加到原数据中
原则t-sne或者pca进行2D或3D可视化
作业: 对心脏病数据集进行聚类。
#day17作业 对心脏病进行聚类
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
warnings.filterwarnings("ignore")
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
target_mapping = {
'True': 1,
'False': 0,
}
data['target'] = data['target'].map(target_mapping) # 将目标变量转换为数字类型
from sklearn.model_selection import train_test_split
X = data.drop(['target'], axis=1) # 特征,axis=1表示按列删除
y = data['target'] # 标签
# 标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 评估不同 k 值下的指标
k_range = range(2, 11) # 测试 k 从 2 到 10
inertia_values = []#存储每个 k 值下的惯性(Inertia)
silhouette_scores = []#存储每个 k 值下的轮廓系数(Silhouette Score)
ch_scores = []#存储每个 k 值下的 Calinski-Harabasz 指数(CH Index)
db_scores = []#存储每个 k 值下的 Davies-Bouldin 指数(DB Index)
for k in k_range:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)#对数据进行聚类
inertia_values.append(kmeans.inertia_) # 惯性(肘部法则)
silhouette = silhouette_score(X_scaled, kmeans_labels) # silhouette_score计算轮廓系数 越大聚类效果越好
silhouette_scores.append(silhouette)
ch = calinski_harabasz_score(X_scaled, kmeans_labels) # CH 指数
ch_scores.append(ch)
db = davies_bouldin_score(X_scaled, kmeans_labels) # DB 指数
db_scores.append(db)
print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")
# 绘制评估指标图
plt.figure(figsize=(15, 10))
# 肘部法则图(Inertia) 惯性(Inertia):用于肘部法则,寻找下降速率明显减缓的拐点作为最佳 k 值。
plt.subplot(2, 2, 1)
plt.plot(k_range, inertia_values, marker='o')
plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('惯性')
plt.grid(True)
# 轮廓系数图 值越大表示聚类效果越好,通常选择局部最高点的 k 值。
plt.subplot(2, 2, 2)
plt.plot(k_range, silhouette_scores, marker='o', color='orange')
plt.title('轮廓系数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('轮廓系数')
plt.grid(True)
# CH 指数图 值越大表示簇间分离度和簇内紧凑度越高,选择局部最高点的 k 值。
plt.subplot(2, 2, 3)
plt.plot(k_range, ch_scores, marker='o', color='green')
plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('CH 指数')
plt.grid(True)
# DB 指数图 值越小表示聚类效果越好,选择局部最低点的 k 值。
plt.subplot(2, 2, 4)
plt.plot(k_range, db_scores, marker='o', color='red')
plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('DB 指数')
plt.grid(True)
plt.tight_layout()
plt.show()
# X_scaled
# 提示用户选择 k 值
selected_k = 8
# 使用选择的 k 值进行 KMeans 聚类
kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labels # 将聚类标签添加到原始数据中
# 使用 PCA 降维到 2D 进行可视化
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
# KMeans 聚类结果可视化
plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')#
plt.title(f'KMeans Clustering with k={selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()
# 打印 KMeans 聚类标签的前几行
print(f"KMeans Cluster labels (k={selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())