自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 Python训练营打卡Day48

DAY 48 随机函数与广播机制知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可。

2025-06-09 22:55:03 734

原创 Python训练营打卡Day47

热力图(红色表示高关注,蓝色表示低关注)半透明覆盖在原图上。昨天代码中注意力热图的部分顺移至今天。作业:对比不同卷积层热图可视化的结果。捕获最后一个卷积层(

2025-06-08 22:46:38 303

原创 Python训练营打卡day46

之前复试班强化部分的transformer框架那节课已经介绍过注意力机制的由来,本质从onehot-elmo-selfattention-encoder-bert这就是一条不断提取特征的路。各有各的特点,也可以说由弱到强。其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。

2025-06-07 22:40:36 1129

原创 Python训练营打卡Day45

知识点回顾:1.tensorboard的发展历史和原理2.tensorboard的常见操作3.tensorboard在cifar上的实战:MLP和CNN模型作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。@浙大疏锦行之前的内容中,我们在神经网络训练中,为了帮助自己理解,借用了很多的组件,比如训练进度条、可视化的loss下降曲线、权重分布图,运行结束后还可以查看单张图的推理效果。如果现在有一个交互工具可以很简单的通过按钮完成这些辅助功能那就好了。所以我们现

2025-06-05 23:07:38 1087

原创 Python训练营打卡Day44

迁移学习效率:预训练模型(如 ImageNet 上训练的 ResNet)的卷积层已经学习到了通用的图像特征(边缘、纹理、形状等)。在处理新任务(如 CIFAR-10 分类)时,可以利用这些已有知识,只训练最后的全连接层来适应新的分类标签,从而显著减少训练时间和数据需求。防止过拟合:对于小数据集,如果从头开始训练整个模型,很容易过拟合。第一阶段(前 5 个 epoch):冻结卷积层,只训练全连接层。1.尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同。2.常见的分类预训练模型。

2025-06-04 23:09:07 384

原创 Python训练营打卡Day43

使用预训练的ResNet18# 冻结所有卷积层参数(可选)# 替换最后的全连接层(适应我们的二分类问题)nn.ReLU(),

2025-06-03 21:25:25 398

原创 Python训练营打卡Day42

DAY 42 Grad-CAM与Hook函数知识点回顾1.回调函数2.lambda函数3.hook函数的模块钩子和张量钩子4.Grad-CAM的示例作业:理解下今天的代码即可。

2025-06-02 23:02:18 849

原创 Python训练营打卡Day41

DAY 41 简单CNN知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

2025-05-31 22:43:29 676

原创 Python训练营打卡Day40

批量维度不变性:无论进行flatten、view还是reshape操作,第一个维度batch_size通常保持不变。动态维度指定:使用-1让PyTorch自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。下面是所有代码的整合版本。

2025-05-30 20:40:09 1224

原创 Python训练营打卡Day39

从这里开始我们进入到了图像数据相关的部分,也是默认你有之前复试班计算机视觉相关的知识,但是一些基础的概念我仍然会提。昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)# 先继续之前的代码from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具。

2025-05-29 20:43:14 1267

原创 Python训练营打卡Day38

维度DatasetDataLoader核心职责定义“数据是什么”和“如何获取单个样本”定义“如何批量加载数据”和“加载策略”核心方法(获取单个样本)、__len__(样本总数)无自定义方法,通过参数控制加载逻辑预处理位置在中通过transform执行预处理无预处理逻辑,依赖Dataset返回的预处理后数据并行处理无(仅单样本处理)支持多进程加载(典型参数root(数据路径)、transform(预处理)batch_sizeshuffle核心结论Dataset类:定义数据的内容和格式。

2025-05-28 22:37:46 1297

原创 Python训练营打卡Day37

DAY 37 早停策略和模型权重的保存对应5. 26作业知识点回顾:1.过拟合的判断:测试集和训练集同步打印指标2.模型的保存和加载a.仅保存权重b.保存权重和模型c.保存全部信息checkpoint,还包含训练状态3.早停策略作业:对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略。

2025-05-27 23:00:54 1108

原创 Python训练营打卡Day36

●作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。●探索性作业(随意完成):尝试进入nn.Module中,查看他的方法。仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。DAY 36 复习日。

2025-05-26 22:58:50 446

原创 Python训练营打卡Day35

DAY 35 模型可视化与推理知识点回顾:1.三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化2.进度条功能:手动和自动写法,让打印结果更加美观3.推理的写法:评估模式作业:调整模型定义时的超参数,对比下效果。

2025-05-25 22:52:05 959

原创 Python训练营打卡Day34

4.类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)3.GPU训练的方法:数据和模型移动到GPU device上。1.CPU性能的查看:看架构代际、核心数、线程数。2.GPU性能的查看:看显存、看级别、看架构代际。DAY 34 GPU训练及类的call方法。

2025-05-24 23:08:44 326

原创 Python训练营打卡Day33

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。定义层数+定义前向传播顺序class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层。

2025-05-23 22:51:07 761

原创 Python训练营打卡day32

作业:参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。2.官方文档的阅读和使用:要求安装的包和文档为同一个版本。1.官方文档的检索方式:github和官网。4.绘图的理解:对底层库的调用。DAY 32 官方文档的阅读。b.普通方法所需要的参数。a.实例化所需要的参数。c.普通方法的返回值。

2025-05-22 23:07:45 345

原创 Python训练营打卡Day31

作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。2.项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法。1.notebook文件夹内的ipynb文件,介绍下今天的思路。DAY 31 文件的规范拆分和写法。今日的示例代码包含2个部分。3.机器学习项目的拆分。4.编码格式和类型注解。2.规范的文件夹管理。

2025-05-21 22:40:05 385

原创 Python训练营打卡day30

模块(Module)本质:以.py结尾的单个文件,包含Python代码(函数、类、变量等)。作用:将代码拆分到不同文件中,避免代码冗余,方便复用和维护。包(Package)在python里,包就是库本质有层次的文件目录结构(即文件夹),用于组织多个模块和子包。核心特征:包的根目录下必须包含一个文件(可以为空),用于标识该目录是一个包。

2025-05-20 21:23:19 1511

原创 Python训练营打卡Day29

我们之前是用复用的思想来看装饰器的,换一个角度理解,当你想修改一个函数的时候,可以通过装饰器方法来修改而无需重新定义这个函数。作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分我们即将开启深度学习部分。注意到其中的cls.log = log_message 这行代码,他把外部的函数赋值给了类的新定义的属性,这里我们介绍这种写法。类也有修饰器,他的逻辑类似:接收一个类,返回一个修改后的类。实际上,定义类的方法,有2类写法。

2025-05-18 22:31:09 423

原创 Python训练营打卡Day28

@浙大疏锦行DAY 28 类的定义和方法知识点回顾:1.类的定义2.pass占位语句3.类的初始化方法4.类的普通方法5.类的继承:属性的继承、方法的继承作业题目1:定义圆(Circle)类要求:1.包含属性:半径 radius。2.包含方法:●calculate_area():计算圆的面积(公式:πr²)。●calculate_circumference():计算圆的周长(公式:2πr)。3.初始化时需传入半径,默认值为 1。题目2:定义长方形(Rectangle)类1.包含

2025-05-17 22:37:45 1017

原创 Python打卡训练营Day27

DAY 27 函数专题2:装饰器ps:第一期day27对应5月16日知识点回顾:1.装饰器的思想:进一步复用2.函数的装饰器写法3.注意内部函数的返回值作业:编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)昨天我们接触到了函数大部分的功能,然后在你日常ctrl点进某个复杂的项目,发现函数上方有一个@xxx,它就是装饰器装饰器本质上是一个 Python 函数,它可以让其他函数或方法在不需要做任何代码修改的前提下增加额外功能。

2025-05-16 23:04:11 1155

原创 Python打卡训练营Day26

●任务: 编写一个名为 describe_shape 的函数,该函数接收图形的名称 shape_name (必需),一个可选的 color (默认 “black”),以及任意数量的描述该图形尺寸的关键字参数 (例如 radius=5 对于圆,length=10, width=4 对于矩形)。●任务: 编写一个名为 print_user_info 的函数,该函数接收一个必需的参数 user_id,以及任意数量的额外用户信息(作为关键字参数)。3.函数的参数类型:位置参数、默认参数、不定参数。

2025-05-15 22:28:36 576

原创 Python训练营打卡Day25

如果找到匹配的,则执行该 except 块中的代码,然后继续执行整个 try-except 结构之后的代码(除非 except 块中又引发了新异常或执行了 return/break/continue 等)。except:如果 try 块里的代码真的出错了(从出错开始就不会继续执行try之后的代码了),Python 就会跳到 except 块里执行这里的代码,而不是崩溃。如果 try 失败:try 块中出错前的代码会执行,然后匹配的 except 块的代码会执行(else 块不会执行)。

2025-05-14 21:56:01 1175

原创 Python训练营打卡Day24

DAY 24 元组和OS模块知识点回顾:1.元组2.可迭代对象3.os模块作业:对自己电脑的不同文件夹利用今天学到的知识操作下,理解下os路径。

2025-05-13 21:31:15 899

原创 Python训练营打卡Day23

转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。因此,估计器需要在训练集上进行训练,并使用训练得到的模型参数对新数据进行预测。之所以提到管道,是因为后续在阅读一些经典的代码的时候,尤其是官方文档,非常喜欢用管道来构建代码,甚至深度学习中也有类似的代码,初学者往往看起来很吃力。在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。

2025-05-12 22:40:38 1086

原创 Python打卡训练营Day22

确认是否接受竞赛规则(需点击 “I Understand and Accept”)。自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。:关闭不必要的输出、减少数据加载量、使用。:Notebook 运行缓慢?DAY 22 复习日。:提交竞赛结果失败?

2025-05-11 22:56:30 1186

原创 Python训练营打卡Day21

t-SNE 是一种强大的非线性降维技术,主要用于高维数据的可视化。它通过在低维空间中保持高维空间中数据点之间的局部相似性(邻域关系)来工作。与PCA关注全局方差不同,t-SNE 更关注局部细节。理解它的超参数(尤其是困惑度)和结果的正确解读方式非常重要。

2025-05-10 21:42:01 1264

原创 Python训练营打卡Day20

对于任何矩阵(如结构化数据可以变为:样本*特征的矩阵,图像数据天然就是矩阵),均可做等价的奇异值SVD分解,对于分解后的矩阵,可以选取保留前K个奇异值及其对应的奇异向量,重构原始矩阵,可以通过计算Frobenius 范数相对误差来衡量原始矩阵和重构矩阵的差异。应用:结构化数据中,将原来的m个特征降维成k个新的特征,新特征是原始特征的线性组合,捕捉了数据的主要方差信息,降维后的数据可以直接用于机器学习模型(如分类、回归),通常能提高计算效率并减少过拟合风险。c.降噪:通常噪声对应较小的奇异值。

2025-05-09 22:59:10 489

原创 Python训练营打卡Day

作业:对心脏病数据集完成特征筛选,对比精度。2.皮尔逊相关系数筛选。6.递归特征消除REF。

2025-05-08 22:58:38 271

原创 Python训练营打卡Day18

作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。1.推断簇含义的2个思路:先选特征和后选特征。3.科研逻辑闭环:通过精度判断特征工程价值。2.通过可视化图形借助ai定义簇的含义。聚类后的分析:推断簇的类型。

2025-05-07 23:06:32 310

原创 Python 打卡训练营 Day17

实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。DBSCAN 的参数是 eps 和min_samples,选完他们出现k和评估指标。除了经典的评估指标,还需要关注聚类出来每个簇对应的样本个数,避免太少没有意义。聚类常见算法:kmeans聚类、dbscan聚类、层次聚类。KMeans 和层次聚类的参数是K值,选完k指标就确定。以及层次聚类的 linkage准则等都需要仔细调优。选择合适的算法,根据评估指标调参( )

2025-05-06 23:57:14 510

原创 Python训练营打卡Day16

在后续进行频繁的数学运算时,尤其是在深度学习领域,对 NumPy 数组的理解非常有帮助,因为 PyTorch 或 TensorFlow 中的。因为前天说了shap,这里涉及到数据形状尺寸问题,所以需要在这一节说清楚,后续的神经网络我们将要和他天天打交道。的 NumPy 数组。掌握 NumPy 的基本操作,能极大地降低学习 Tensor 的门槛。二维数组可以被看作是“数组的数组”或者一个矩阵。1.numpy数组的创建:简单创建、随机创建、遍历、运算。的概念,与日常理解的维度非常相似。等数据结构直接传递给。

2025-05-05 23:08:44 1037

原创 Python训练营打卡Day15

尝试找到一个kaggle或者其他地方的结构化数据集,用之前的内容完成一个全新的项目,这样你也是独立完成了一个专属于自己的项目。仔细回顾一下之前14天的内容,没跟上进度的同学补一下进度。

2025-05-04 23:04:35 214

原创 Python 训练营打卡 Day14

尝试确定一下shap各个绘图函数对于每一个参数的尺寸要求,如shap.force_plot力图中的数据需要满足什么形状。确定分类问题和回归问题的数据如何才能满足尺寸,分类采取信贷数据集,回归采取单车数据集。

2025-05-03 23:09:30 412

原创 Python训练营打卡Day13

特性修改类别权重 (修改分类阈值作用阶段模型训练时模型预测(或评估)时作用对象模型的损失函数参数学习过程模型输出概率/分数到最终预测的决策规则对模型影响改变学习到的模型本身和决策边界不改变已学习到的模型性质根本性调整,代价敏感学习后处理性质的调整目标侧重学习一个内在区分能力更强的模型在现有模型上调整性能指标的权衡实现方式设置算法的参数(如在预测后应用不同的概率门槛。

2025-05-02 20:45:53 987

原创 Python训练营打卡Day12

今天以的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。模仿生物进化中的"优胜劣汰"机制,通过种群迭代进化寻找最优解。假设你有一群不同基因的鸟(初始种群),目标是找到飞得最高的鸟。通过不断让优秀的鸟交配(交叉)、偶尔基因突变(变异),后代逐渐进化出更强的飞行能力。1. 初始化种群随机生成一组候选解(如二进制编码的个体),例如用6位二进制表示鸟的翅膀长度。2. 评估适应度。

2025-05-01 21:14:33 1095

原创 Python训练营Day11

日拱一卒,功不唐捐DAY11超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长今日作业:对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索1.数据预处理。

2025-04-30 22:59:06 337

原创 Python 训练营 Day10

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标。print(classification_report(y_test, svm_pred)) # 打印分类报告。print(f"训练集形状:{X_train.shape},测试集形状:{X_test.shape}")print(f"精确率: {svm_precision:.4f}")

2025-04-29 23:57:31 1034

原创 Python训练营打卡Day9

尝试对着心脏病数据集绘制热力图和单特征分布的大图(包含几个子图)enumerate()函数。介绍了热力图的绘制方法。介绍了子图的绘制方法。

2025-04-28 22:58:55 583

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除