今天分享的是人工智能AI行业研究报告:**《2024年度中文大模型阶段性进展评估》,**报告版权方/来源:中文大模型基准测评。
本报告共计:80 页。完整版PDF电子版报告下载方式见文末。
研究报告内容摘要如下
大模型对战胜率分布图
我们统计了所有大模型在测评中与GPT4-Turbo-0409的对战胜率。模型在 每道题上的得分与GP T 4 - T u r b o - 0 4 0 9相比计算差值,得到胜(差值大于 0.25分)、平(差值在-0.25~+0.25分之间)、负(差值低于-0.25)。
1.o1-preview 的胜率大幅领先
从整体对战来看,国外领先模型o1-preview和ChatGPT-4o-latest的胜率均 在 3 0 % 以 上 , 占 据 前 二 名 , 同 样 表 现 突 出 的 还 有 C l a u d e 3 . 5 S o n n e t (20241022),显示出其强大的整体能力。紧随其后的是GLM-4-Plus,胜 率为29.08%,和率为50.59%,还有Qwen2.5-72B-Instruc t、SenseCha t 5.5、AndesGPT-2.0等模型,也展现出优于GPT4-Turbo-0409的实力。
2. 国内小模型胜率表现可圈可点
在200亿以内参数的模型中Qwen2.5-7B-Instruct的胜率排在首位,展现出 不俗能力。排在2至3位的是GLM-4-9B-Chat、MiniCPM3-4B,同样有40% 以上的胜和率,表现可圈可点。
3. 在基础题目上,大部分模型与GPT-4-Turbo-0409差距有限
从胜率分布数据可以发现,超过一半的模型的和率都在40%以上。这说明 国内外大部分模型在基础题目上与GPT-4-Turbo-0409的水平相近,随着任 务难度的提升,不同模型的表现会有一定区分度。
国内大模型成熟度分析
1.高成熟度能力
高成熟度指大部分闭源大模型普遍擅长的能力,S C 成熟度指数在0.9至1.0之间。
当前国内大模型成熟度较高的能力是【语言理解】、 【知识与百科】和【生成与创作】,也是目前产业 和用户侧大模型的重点应用场景。
2.中成熟度能力
中成熟度指的是不同大模型能力上有一定区分度, 但不会特别大。SC成熟度指数在0.8至0.9之间。
当前国内大模型表现出中成熟度的能力是【工具使 用 】 、 【 长 文 本 】 、 【 计 算 】 、 【 角 色 扮 演 】 、 【传统安全】、【逻辑推理】和【高阶推理】,还 有一定优化空间。
3.低成熟度能力
低成熟度指的是少量大模型较为擅长,很多模型无 法胜任。SC成熟度指数在0.7至0.8之间。
当前国内大模型低成熟度的能力是【代码】。
4.极低成熟度能力
极低成熟度指的是大多数模型无法胜任。S C成熟度 指数在0.7以下。
当前国内大模型极低成熟度的能力是【指令遵循】
SuperCLUE-V榜单
1.ChatGPT-4o-latest在综合能力上领跑
ChatGPT-4o-latest取得77.81分,领跑多模态基准。其中多模态应用能力上有超过80 分的表现,展现出较强的场景适配性和落地能力。
国内最好模型hunyuan-vision取得71.95分,略低于GPT-4o有2.41分。
2.国内多模态大模型在部分细分任务上具备领先优势
Step-1V-8k在细粒度视觉认知任务如特征定位、对象计数方面表现优异;
hunyuan-vision在中文元素理解和推理任务中表现可圈可点,有超过GPT-4o的表现。
SenseChat-Vision 5.5在数理逻辑推理任务如图表推理、场景推理方面具备领先优势
3.国内大模型的基础多模态认知能力仍需提升
在基础能力方面国内大模型较海外模型仍有一定差距,国内外头部多模态大模型在基 础认知能力方面相差2.47分。
AIGVBench-T2V榜单
1.中文环境下,国内文生视频模型整 体表现好于国外模型。
D r e a m i n a即 梦 ( 7 2 . 9 9分 ) 和 可 灵(7 1 . 8 9分)在中文环境下文生 视 频 综 合 能 力 表 现 出 色 , 略 好 与 国 际 代 表 性 模 型 L u m a ( 7 0 . 8 9 分)。
2.Runway Gen-3 在综合得分和多 项指标中表现最佳。
Runway Gen-3 在纪录片、短视频、 影视场景表现最佳。
可灵、Dr e ami n a即梦和P i xVe rs e V 2分 别 在 资 讯 场景、 中 国 文 化 场 景和广告场景表现最佳。
3.国内模型在高难度任务中表现强劲
智谱清影(7 5 . 2 4)和 Dr e ami n a 即梦(7 5 . 8 0)在高难度任务中表 现优异。
SuperCLUE-Image榜单
1.DALL-E 3在综合能力上领跑
DALL-E 3(72.91分)综合能力表现出色,领跑SuperCLUE-Image 基准。较国内最好模型高1.39分
2.国内文生图大模型有较大进展,其中文字创作和中华文化和 元素任务上,有一定领先优势。
在文字创作任务上,BlueLM-Art取得75.57分,有较大领先优势。
在中华文化和元素任务上,豆包文生图则取得82.97分有超过 DALL-E 3的表现。
BlueLM-Art、混元文生图和豆包文生图均有65分以上的优异表现。
3.国内文生图大模型在图像质量、图文一致性和内容创造性方 面仍需提升
海外文生图模型DALL-E 3、Midjouney和Flux.1 Pro在文生图基础 能力上,如图像质量、图文一致性和内容创造性方面有一定领先优 势。
国文生图模型则仍有一定提升空间。
幻影视界整理分享报告原文节选如下:
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈