AI知识库较量:Dify与FastGPT谁更胜一筹?

后台有小伙伴经常问:Dify 和 fastGPT 哪个好啊?我该用哪个呢?

为了帮小伙伴解开这个疑惑,今儿就先带大家分别看下这两个产品 在知识库上的异同点 。废话不多说,开整!

Dify

先来看 Dify 吧,比较熟。 从部署到使用上,整体来说都比较容易上手,类似于 Coze

我们之前创建过一个 k8s 相关的知识库,在里面导入了一本讲解 Kubernetes 的书籍, 文本分段和清洗都是默认的配置

最终得到的文档信息如下:

  • 分段为 147

  • 段落长度 500

现在将它加到应用中试试看效果:

可以看到它从知识库中找到了相关内容并给出了回答。除此之外它还 标注了引用的知识库,以及从哪段内容中获取的内容

目前看起来效果还 OK,接下来我们试试 Dify 中提供的 QA 模式 ,看看在这种模式下知识库检索能力是否能得到提升:

QA 模式的嵌入处理会比较耗时,需要耐心等待:

最终花费了 27 分钟的时间,终于分段好了:

问两个问题试试看:

emmmm,咋说呢,回答是回答了,但是感觉没啥变化,回答还是和刚刚一样精简😄

FastGPT

相同的文件,我们在 FastGPT 中创建并使用知识库,这里同样先 按照默认配置进行知识库创建

然后在应用中提出相同的问题,看看结果怎么样?

可以看到都是默认配置,但是 FastGPT 相较于 Dify 来说,回答得更为详细 。不但给出了 k8s 的相关概念,还 连带着介绍了 k8s 的核心组件以及功能特点

这是因为 fastGPT 在回答问题时,会 帮我们扩展问题 ,这样可以使回答的内容更加详细精准:

接下来我们升级一下知识库,在创建知识库时选择 QA 模式(也就是问答拆分),看看二者在效果还有没有这种明显差异。

可以看到正在生成数据,不过过程有些慢(这块和 Dify 一样,QA 模式的生成一般都会耗费大量的 token 和时间):

再回到应用中进行测试:

简直是正中目标!!相比之下,FastGPT 的知识库能力完胜。

在本地部署的版本上,QA 花费的时间太长而且因为三金的 API 问题,老是卡住,所以直接切到 fastGPT 的线上去测试,最终效果是一样的。

总结

从效果上来看,FastGPT 的知识库检索是强于 Dify 的,但是这并不代表 Dify 就不如 FastGPT:

  • 首先,在知识库创建上,FastGPT 在「Web 站点同步」和「外部文件库」这两个功能上是收费的,就算是本地部署也是收费的,而 Dify 则是免费的

  • 其次,个人感觉 Dify 的部署到使用,是比较简单的,而且交互体验和 UI 上也优于 FastGPT

  • 开源版本的 FastGPT 的知识库限制为 30个,应用限制为 500 个;而 Dify 的社区版没有这些限制

  • Dify 中提供了 丰富的内置工具和一些模版 ,FastGPT 在这块比较欠缺

综上,如果 对知识库有比较高的要求,尤其是想做智能客服问答类的产品,推荐使用 FastGPT ,反之 对 Agent 感兴趣则可以尝试一下 Dify

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### DifyFastGPT知识库功能对比 #### 功能概述 Dify FastGPT 都提供了强大的工具来处理自然语言理解生成任务,但在知识库的功能实现上存在一些差异。两者都支持通过外部数据源增强模型的能力[^1]。 #### 数据集成能力 Dify 提供了一个灵活的数据导入机制,允许用户上传多种类型的文件(如 PDF、CSV 或 TXT),并自动解析这些文档的内容以便后续查询调用。相比之下,FastGPT 同样具备类似的文件导入功能,但它更注重实时 API 的接入方式,使得开发者能够轻松连接到第三方数据库或其他在线服务。 #### 查询效率优化 对于大规模的企业级应用而言,高效的检索性能至关重要。在此方面,Dify 利用了向量搜索引擎技术,可以快速定位最相关的上下文片段给用户提供精准的回答;而 FastGPT 则依赖其内部开发的索引算法,在保持较高召回率的同时也实现了较低延迟的结果返回过程。 #### 自定义化程度 当涉及到具体业务场景下的定制需求时,两款产品均有各自的解决方案。例如,Dify 支持创建专属领域词典以及调整对话逻辑流程图等功能模块,帮助客户更好地适配特定行业术语或者工作流模式的需求特点。此同时,FastGPT 更加突出的是它那套直观易懂的可视化界面设计风格,让即使是没有任何编程背景的人也能迅速上手配置属于自己的聊天机器人实例。 ```python # 示例代码展示如何使用Dify SDK加载本地PDF文件作为知识库的一部分 from dify import KnowledgeBase kb = KnowledgeBase() file_path = "./example.pdf" result = kb.add_document(file_path) print(result) # 对应于FastGPT中的API请求示例用于关联远程MySQL表单记录至当前会话环境变量当中去 import fastgpt client = fastgpt.Client(api_key="your_api_key_here") response = client.execute({ 'action': 'connect_database', 'db_type': 'mysql', 'connection_string': { 'host': 'localhost', 'port': 3306, 'username': 'root', 'password': '', 'database': 'test_db' } }) print(response['status']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值