后台有小伙伴经常问:Dify 和 fastGPT 哪个好啊?我该用哪个呢?
为了帮小伙伴解开这个疑惑,今儿就先带大家分别看下这两个产品 在知识库上的异同点 。废话不多说,开整!
Dify
先来看 Dify 吧,比较熟。 从部署到使用上,整体来说都比较容易上手,类似于 Coze 。
我们之前创建过一个 k8s 相关的知识库,在里面导入了一本讲解 Kubernetes 的书籍, 文本分段和清洗都是默认的配置 :
最终得到的文档信息如下:
-
分段为 147
-
段落长度 500
现在将它加到应用中试试看效果:
可以看到它从知识库中找到了相关内容并给出了回答。除此之外它还 标注了引用的知识库,以及从哪段内容中获取的内容 :
目前看起来效果还 OK,接下来我们试试 Dify 中提供的 QA 模式 ,看看在这种模式下知识库检索能力是否能得到提升:
QA 模式的嵌入处理会比较耗时,需要耐心等待:
最终花费了 27 分钟的时间,终于分段好了:
问两个问题试试看:
emmmm,咋说呢,回答是回答了,但是感觉没啥变化,回答还是和刚刚一样精简😄
FastGPT
相同的文件,我们在 FastGPT 中创建并使用知识库,这里同样先 按照默认配置进行知识库创建 :
然后在应用中提出相同的问题,看看结果怎么样?
可以看到都是默认配置,但是 FastGPT 相较于 Dify 来说,回答得更为详细 。不但给出了 k8s 的相关概念,还 连带着介绍了 k8s 的核心组件以及功能特点 。
这是因为 fastGPT 在回答问题时,会 帮我们扩展问题 ,这样可以使回答的内容更加详细精准:
接下来我们升级一下知识库,在创建知识库时选择 QA 模式(也就是问答拆分),看看二者在效果还有没有这种明显差异。
可以看到正在生成数据,不过过程有些慢(这块和 Dify 一样,QA 模式的生成一般都会耗费大量的 token 和时间):
再回到应用中进行测试:
简直是正中目标!!相比之下,FastGPT 的知识库能力完胜。
在本地部署的版本上,QA 花费的时间太长而且因为三金的 API 问题,老是卡住,所以直接切到 fastGPT 的线上去测试,最终效果是一样的。
总结
从效果上来看,FastGPT 的知识库检索是强于 Dify 的,但是这并不代表 Dify 就不如 FastGPT:
-
首先,在知识库创建上,FastGPT 在「Web 站点同步」和「外部文件库」这两个功能上是收费的,就算是本地部署也是收费的,而 Dify 则是免费的;
-
其次,个人感觉 Dify 的部署到使用,是比较简单的,而且交互体验和 UI 上也优于 FastGPT
-
开源版本的 FastGPT 的知识库限制为 30个,应用限制为 500 个;而 Dify 的社区版没有这些限制
-
Dify 中提供了 丰富的内置工具和一些模版 ,FastGPT 在这块比较欠缺
综上,如果 对知识库有比较高的要求,尤其是想做智能客服问答类的产品,推荐使用 FastGPT ,反之 对 Agent 感兴趣则可以尝试一下 Dify 。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈