国内“推理模型”卷疯了!类 o1 推理模型,谁更强?

9 月份,OpenAI 正式公开前所未有的复杂推理大模型 o1,这是一个重大突破,新模型既具有通用的能力,也可以解决比此前的科学、代码和数学模型能做到的更难问题。

实验结果表明,在绝大多数推理任务中,o1 的表现明显优于 GPT-4o。

图:o1 在具有挑战性的推理基准上比 GPT-4o 有了很大的改进

OpenAI 为大模型的能力开启了新方向:「能不能像人一样思考与推理」已经成为了评判它们能力的重要指标。

最近这段时间,国内AI领域中,“推理模型”非常卷!

01

DeepSeek 发布了国内首个对标o1的推理模型 DeepSeek-R1-Lite

02

月之暗面 Kimi 推出的主打数学能力的推理能力强化模型 k0-math

03

阿里国际提出 Marco-o1 推理模型

04

昆仑万维推出「天工大模型 4.0」o1 版(Skywork o1),正式启动邀请测试

05

阿里Qwen团队发布首个开源推理大模型 QwQ-32B-Preview

06

北大、鹏城实验室等联合发布能够自主进行多阶段推理的视觉语言模型模型 LLaVA-o1

07

上交大 GAIR 研究组发布 o1 复现项目

AI 社区尤其是国内大模型公司正在向 o1 的霸主地位发起冲击,并开始在一些权威评测中取得领先。

部分公司称其推理模型的效果大幅超越/领先了 OpenAI 的 o1-preview、GPT-4o 模型。

表:近期推出的国内推理模型在不同数据集上的评分表现

**NO.**1

DeepSeek版o1 VS OpenAI o1

DeepSeek-R1-Lite 是深度求索推出的新一代 AI 推理模型,用强化学习训练,具备长思维链推理能力,能实时展示推理思考过程,性能在多个基准测试中超越 GPT-4 等模型。

该模型在数学、编程和复杂逻辑推理任务上表现出色,提供媲美 OpenAI o1-preview 的推理效果。

比如,美国数学竞赛(AMC)中最高难度级别的 AIME,DeepSeek R1-Lite 领先 o1 一大截!

  • 官方网站:https://chat.deepseek.com/

如下图所示,DeepSeek-R1-Lite-Preview 和 o1-preview 对比,随着思考长度的增加,AIME 上的得分稳步提高。

**NO.**2

Kimi新一代数学推理模型k0-math VS OpenAI o1

Kimi 正式发布新一代数学推理模型 k0-math。根据介绍,基准测试显示,Kimi k0-math 的数学能力可对标全球领先的 OpenAI o1 系列可公开使用的两个模型:o1-mini 和 o1-preview。

在中考、高考、考研以及包含入门竞赛题的MATH等 4 个数学基准测试中,k0-math 初代模型成绩超过 o1-mini 和 o1-preview 模型。

具体地,如下:

  • 在数学能力基准测试 MATH 中,k0-math 模型得分 93.8,超过o1-mini 的 90 分和 o1-preview 的 85.5 分。k0-math 这一成绩仅次于暂未开放使用的 o1 完全版 94.8 分。

  • 在两个难度更大的竞赛级别的数学题库 OMNI-MATH 和 AIME 基准测试中,k0-math 初代模型的表现分别达到了 o1-mini 最高成绩的 90% 和 83%。

**NO.**3

阿里国际发布 Marco-o1 推理模型 VS OpenAI o1

阿里巴巴国际 MarcoPolo Team 发布全新开源大模型 Marco-o1:面向开放式解决方案的开放式推理模型!

传送门:阿里巴巴开源推理模型 Marco-o1!

实验结果表明,Marco-o1 模型在不同语言和配置下提高了推理能力。

英语MGSM数据集上:

  • Marco-o1-CoT 相比基线模型 Qwen2-7B-Instruct 提升了 1.37%;

  • Marco-o1-MCTS(step) 进一步提升至 90.40%,比基线模型提高了显著的 6.17%。

中文MGSM数据集上:

  • Marco-o1-MCTS(mini-step of 32 tokens) 达到 82.40% 的准确率,比基线模型提高了令人瞩目的 5.60%。

这些结果清楚地表明,通过巧妙结合CoT微调、MCTS搜索和创新的推理策略,Marco-o1 在多语言数学推理任务上取得了显著进展。

**NO.**4

昆仑万维「天工大模型4.0」o1版(Skywork o1)VS OpenAI o1

11月27日,昆仑万维公司宣布正式推出其最新研发成果——“天工大模型4.0”o1版(Skywork o1)。

Skywork o1国内首款具备中文复杂推理能力的o1模型,具备自我反思思考链技术,能模仿人类的思维过程,显著提升逻辑推理和复杂任务解决能力。

传送门:最新开源:「天工大模型4.0」o1版来了!

开源的 Skywork o1 Open,参数为 8B,在各项数学和代码指标上均有大幅提高,并将Llama-3.1-8B 的性能拉到同生态位SOTA,超越 Qwen-2.5-7B instruct。

同时,8B 的 Skywork o1 Open 也解锁了很多较大量级模型,如GPT 4o,无法完成的数学推理任务(如24点计算)。

基于天工自研的 Q* 线上推理算法配合模型在线思考,并寻找最佳推理路径。

这也是全球首次将 Q* 算法实现和公开,在 MATH 等数据集上可以显著提升 LLM 的推理能力,并降低计算资源的需求。

**NO.**5

阿里开源推理大模型 QwQ-32B-Preview,推理水平比肩OpenAI o1

11月28日,阿里Qwen团队发布首个开源推理大模型 QwQ-32B-Preview

QwQ(Qwenwith Questions)是通义千问Qwen系列的最新实验性研究模型,旨在提升 AI 的推理能力

QwQ-32B-Preview 包含 325 亿个参数,能够处理最长 32000 个 tokens 的提示词;在 AIME 和 MATH 基准测试中,它的表现优于 OpenAI 的两个推理模型 o1-preview 和 o1-mini。

具体地,QwQ-32B-Preview 在各项基准测试中的表现如下:

  • 在考察科学问题解决能力的 GPQA 评测集上:QwQ-32B-Preview 获得 65.2% 的准确率,具备研究生水平的科学推理能力;

  • 在涵盖综合数学主题的 AIME 评测中:QwQ-32B-Preview 以 50% 的胜率证明其拥有解决数学问题的丰富技能;

  • 在全面考察数学解题能力的 MATH-500 评测中:QwQ-32B-Preview 斩获 90.6% 的高分,一举超越 OpenAI o1-preview 和 o1-mini,体现了在各类数学主题上的全面理解;

  • 在评估高难度代码生成的 LiveCodeBench 评测中:QwQ-32B-Preview 成绩为 50.0%,验证了在实际编程场景中的出色表现。

**NO.**6

北大、清华等联合发布 LLaVA-o1 VS OpenAI o1

北大、鹏城实验室等国内研究机构推出了多模态版o1开源模型 LLaVA-o1,基于 Llama-3.2-Vision 模型打造,超越传统思维链提示,实现自主“慢思考”推理。

与链式思维提示(CoT)不同,LLaVA-o1 可以按照四个阶段(摘要、视觉解释、逻辑推理和结论生成)进行结构化输出。这种结构化的方法使 LLaVA-o1 在推理密集型任务上的性能有显著提升。

根据论文介绍,仅用一个包含10万训练样本的数据集,LLaVA-o1 在多模态推理基准测试中超越了其基础模型 8.9%,并在性能上超越了一众开闭源模型,如 Gemini-1.5-pro、GPT-4o-mini 和 Llama-3.2-90B-Vision-Instruct。

国内推理模型的技术,仍在探索中

最近,国内有很多大模型公司开始发布类似 o1 的模型,虽然不排除有炒作的嫌疑,但说明大模型的竞争是非常激烈的!

根据OpenAI官方博客,o1 深度思考和复杂推理能力的提升归功于采用了自我对弈强化学习(Self-play RL)、思维链(CoT)等技术。

但 OpenAI 并没有公开 o1 模型的具体技术细节,从各高校、研究机构的 o1 模型复现研究来看,o1 的主要技术路线为「搜索+强化学习」,即对思维链进行搜索,然后用强化学习去学习搜索的过程。

国内做类 o1 推理模型的具体技术仍在探索中,有可能距离真正的 o1 还有一段较长的路要走!

近期国内推出的 7 个类 o1 推理模型中,仅有 3 个发布了技术报告,其余则没有公开技术细节。从已公开的三份技术报告来看,各家的技术路线也有一定差异。

不过,厂商发布的新模型要是不带点思维链,恐怕都不好意思拿出手了。

表:近期推出的国内推理模型所用技术情况

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值