现在AI的重要性经过这两年的发酵不用多说,如果你的企业还没拥抱AI,早晚等死,所以无论你是科技公司还是传统性质企业,在企业内部如何更好的融入AI,如何更高效的降低成本并提高生产性是所有企业面临的一个话题。今天主要跟大家聊聊,传统性质企业在AI新时代的浪潮下,企业该如何进行数智化转型,如何更高效的转型,IT部门在其中应该扮演什么新角色。
先来聊聊传统IT部门的困境:IT部门一般在传统企业中的定位是支持性质部门,负责解决技术问题和维持公司IT系统的正常运行,很少涉及具体业务,并且在企业内部的地位不高,话语权有限,其特殊的考核机制也限制了其创新。而如今在AI的浪潮下,IT部门将会承担更重要的角色,应是企业数智化转型的排头兵,助推剂,起到举足轻重的作用。
1、重中之重:AI工具的使用
如果你之前的公司有IT部,需要划分出来一部分人投入在AI工具上,大公司可以多投一些人,依据不同部门、不同业务领域和不同职能都设立AI工具小组;如果是小公司,建议组建2~5人的AI工具小组,集中负责公司整体AI工具方向。而这部分人需要做什么呢?
结合公司实际业务和员工的日常工作场景,评估市面上已有的AI工具(可以是软件,也可以是硬件),无论是收费的还是免费的或是开源的,只要可以大幅提高生产性和质量,都可以尝试,选出最合适的,并且还要持续关注AI新工具的动态。公司数智化转型的第一步首先应该做这个,因为很多公司是没有技术能力自己创造AI工具,所以导入已有的AI工具一定是首选。可以首先考虑从一些通用性质的工具入手,例如使用一些AI搜索和知识问答网站提高查询效率、用AI自动提取和整理会议纪要、使用AI文本工具自动对文章内容进行解析和修改、使用AI鼠标和键盘提高工作效率等。如果不知道去哪些地方找AI工具,可以参考下面这些AI导航站。例如:
https://ai-bot.cn/
https://www.aibase.com/zh
https://www.aigc.cn/
https://www.toolify.ai/zh/
2、定制企业专属AI大模型 / 知识库
企业数智化转型的第二步,则是需要根据企业的业务需求,定制企业内部私有大模型或知识库,聚焦赋能企业业务,所以公司还需要成立一个大模型小组,这个小组的职责就是整合公司业务喂给大模型(可以视具体场景选择微调或RAG),使大模型了解公司,具备公司多领域的知识(这里建议构建多个,例如公司职能和规章制度层面有一个、公司整体运营数据分析和战略层面有一个、具体的业务领域下则可以划分多个)。这里需强调一点,大模型小组不需要有专门搞AI算法的高级人员,除非你就是对这方面要求极高,否则现在微调的门槛很低,有很多现成的可视化工具(例如LLama-Factory),在页面点一点即可进行微调。如果你的业务场景偏查询,可能连微调都不用,直接用RAG知识库方式即可。依据业务场景,必要时也可以接入一些API来丰富你的数据来源。
这里需要注意:无论是大模型方式还是RAG知识库方式,他们都是背后的底座,提供数据,上层一定需要配套一些可视化工具或者创建Agent智能体使用。这里推荐几个不错的开源的知识库或智能体工具,大家可以参考下:
https://github.com/langgenius/dify
https://github.com/lobehub/lobe-chat
https://github.com/infiniflow/ragflow
https://github.com/labring/FastGPT
最后这个大点总结一下,想要你的AI工具具备你企业的专属技能,赋能公司各业务场景,最后请记住这个公式,现阶段足够用了:
微调大模型 + RAG知识库 + 接入API(根据需求接入外部或内部自己开发的API) + 合适的AI工具(推荐智能体方式)
难点!!!上面说的那些技术层面个人感觉都很简单,入手成本较低,找个AI经验人员带着一周即可上手。最难的是如何收集、整理和清洗企业的历史数据,这个往往是最费时也是最难的,尤其公司越大,整合资源层面成本越高。无论你用微调的方式还是RAG知识库方式,数据质量的影响起到决定性作用。所以可以考虑组建一个数据小组,用于整理和清洗模型和知识库用到的数据。
--------
上面这两件事做完并且长期坚持不断完善和改进,那恭喜你,你的企业已经具备了一定数智化的能力,最少打败了50%的企业。
3、高级:建立正确的AI认知和AI自动化流程、AI治理框架
企业数智化转型的最高层次,也是现阶段大多数企业做不到的一个点,就是提高企业员工的AI认知,大家一条心去打造企业的智能化体系,共同推进AI发展和应用。尤其IT部门更是应该深度拥抱AI,定期关注AI领域最新的动态,秉着持续学习和智能化赋能公司的初心,对公司持续进行智能化改进。当AI在公司推进至成熟阶段时,应该形成了企业内部专属的智能化和自动化解决方案,并且建立了AI治理框架,制定使用政策和规范,进行风险管理,确保AI技术合理合规的使用。
--------
写在最后,企业的转型从数字化建设到现在的数智化建设,都是一个长期而复杂的过程,这里需要IT部门不断的学习和创新,带领着公司其他部门人员一起推动AI的应用。IT部门通过转型和重塑角色,成为推动企业数智化建设的关键力量。未来随着AI技术的越来越成熟,普及度越来越高,技术与业务的边界也将变得更加模糊,企业如果现在还不进行数智化转型,不拥抱AI,等死比找死死的更快。
如果大家后续对企业进行数智化转型有疑惑的地方,可以评论区留言或私信我,将无偿进行解答,大家一起探讨企业数智化转型的未来。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈