Qwen爆改为DeepSeek,再复现R1!

对于目前很火的Deepseek,最近有准备LLM面试的学员问需要重点掌握哪些东西,给大家的建议是这块最重要的是deepseek v3和r1的技术报告,建议大家去精读一下,其中MLA注意力,MTP,GRPO,冷启动数据,这些是重点。

前言

图片Deepseek使用更低的成本追赶OpenAI的效果

Deepseek使用更低的成本追赶OpenAI的效果

关注Deepseek也有一年多了,当时Mixtral-8x7B模型刚出来,我写了一篇分析其MoE架构的文章。

Deepseek不久后推出了他们第一版Deepseek MoE模型,他们的工作人员看到文章加了我的微信;

在做PiSSA[1]的时候,我就将Deepseek MoE视为主流模型进行了实验对比;

在Deepseek V2出来后,MLA架构巧妙地设计吸引了我。启发我做出CLOVER[2]这篇文章。

MLA中存在一个absorb操作,能将Key Weight吸收到Query Weight中,Value Weight吸收到Output Weight中,缺点是合并后参数量会变大。

CLOVER先合并再分解,不改变模型结构就能得到正交的注意力头,对剪枝和微调都有很大的好处;

随着Deepseek V3/R1彻底爆火,我也来添一把火:

https://huggingface.co/papers/2502.07864``https://github.com/fxmeng/TransMLA

本文理论证明了,在同等KV Cache开销下,MLA的表达能力始终大于GQA的能力,并通过实验验证这一优势。

本文提出一种TransMLA的方法,能将目前主流模型如LLaMA-3,Qwen-2.5等模型中的GQA统统等价变换为能力更强的MLA。

本文将会使用改造后的模型复现R1的能力。此外还会探索MoE,MTP结构,混合精度量化训练,训练推理加速等技术。

希望能推动基于GQA模型向MLA模型的过渡,帮助初学者了解Deepseek使用的技术,以及给大模型厂商提供一个低成本迁移模型架构的方案。

TransMLA方法

本节首先提出以下定理:

定理1:当KV Cache大小相同时,MLA的表达能力大于GQA。

证明:通过接下来的1)2)3)节,我们论证了任何GQA都可以等价转换为具有相同KV Cache大小的MLA形式。在第4)节中,存在MLA无法通过GQA表示的情况。从而完成定理1的证明。

Group Query Attention (GQA)

Group Query Attention (GQA)

1)GQA形式,复制Key-Value

上图展示了分组注意力(GQA)的典型结构。在GQA中, 被拆分成个头,每个头的维度为。

为了减少Key和Value的数量,被定义为具有个头(其中),每个头的维度为 。

设 为长度为T、隐藏维度为D的输入序列, 为Key的投影矩阵。那么,

由于标准的多头注意力要求 和(以及)具有相同数量的头,因此必须将从个头扩展到个头。定义复制因子。

将沿其列划分为个块,每个块对应一个头:, 其中每个块。

通过将每个复制s次并拼接,得到扩展后的矩阵 :次次

Multi-Head Attention (MHA)

Multi-Head Attention (MHA)

2)MHA形式,将复制操作移到参数侧

上图展示了一种使用多头注意力(MHA)替代GQA的方法,在计算 之前,可以先复制投影矩阵。

首先,将沿其列划分为部分,其中每个对应Key中的一个原始的注意力头:

然后,将每个复制次,并按顺序拼接它们,形成新的投影矩阵:次次将应用于,直接得到这种方法在数学上等价于先计算 ,然后复制其头(GQA)。

3)MLA形式,低秩分解参数矩阵

上图展示了 ,它是通过复制形成的,最多有个自由度。因此,它的秩最多为。

为了更正式地理解这一点,使用奇异值分解(SVD)对进行分解:, 其中和是的正交矩阵,是的对角矩阵,包含奇异值。只有前(或更少)的奇异值可能是非零的。

因此,可以截断SVD,只保留前r个奇异值,其中:定义那么 且

同样的方法也可以直接迁移到Value的变换上,这里不再展开讨论。

其中在缓存Key和Value矩阵时,只需要存储低秩表示 和 。

在实际的注意力计算中,可以通过与 和 相乘来“扩展”表示,从而恢复全维度并增强表达能力。

4)存在MLA无法被GQA表示的情况

考虑一种情况,其中 中的向量是正交的。 在这种情况下,乘以 与 后,每个通道的输出在通道间保持不同。

然而,在GQA中,每组内的头是复制的,这意味着组内所有头的输出是相同的。

这种结构差异意味着某些MLA的情况无法被GQA表示,因为MLA允许在各个通道之间有更大的输出多样性。

基于上述分析,我们证明了定理1。通过将GQA转化为等效的MLA表示,我们可以增强模型的表达能力。 接下来的章节将展示实验结果,以验证这一结论。

实验效果

我们以Qwen2.5为例,展示如何将一个基于GQA的模型转换为MLA模型,并对比转换前后的模型在下游任务中的训练效果。

Qwen2.5-7B模型的每一层包含28个Query头和4个Key/Value头,每个头的维度为128,KV Cache的维度为1024。

Qwen2.5-14B模型的每一层包含40个Query头和8个Key/Value头,每个头的维度为128,KV Cache的维度为2048。

在将Qwen2.5-7B模型转换为MLA模型后, 和 的输出维度都被调整为512,KV Cache的维度依然保持为1024。

与GQA模型的设置不同,在TransMLA中, 和 将512维的特征升维至 维 。

由于28个Query头可以分别与28个Query进行交互,形成不同的功能表示,这种调整显著增强了模型的表达能力。

通过这种方式,TransMLA能够提升GQA模型的表达能力,同时不增加KV Cache的数量。值得注意的是,新增的参数量非常小。

具体来说,针对Q-K对,增加了一个 的矩阵,而原始矩阵的维度为 ,因此新增参数量仅占原始矩阵的1/8。

对于V-O对,新增的参数量同样是原来参数量的1/8。整体来看,模型的参数量从原来的7.6B略增至7.7B,增加幅度非常小。

为了评估转换后的MLA模型性能的提升,我们将原始基于GQA的Qwen模型与转换后的TransMLA模型分别在一个新的指令微调数据集SmolTalk上进行训练。

SmolTalk数据集包含丰富的指令微调数据,同时也涵盖了MetaMathQA等数学任务数据和Self-OSS-Starcoder2-Instruct等代码任务数据。

训练过程中,我们使用了torchtune框架,设定batchsize为16,学习率为2e-5,并训练了2个epoch。

在训练过程中,为了尽量减少对原始模型的影响,我们仅对模型中Key-Value层进行训练。

对于GQA模型,只训练 和 ;而对于转化后的MLA模型,我们训练 、、 和 四个权重矩阵。

训练过程中的Loss以及训练后模型的效果都展示在下图中:

训练loss以及在测试集上的准确率

训练loss以及在测试集上的准确率

从图中可以看出,经过转换的MLA模型在训练过程中表现出更低的Loss值,表明其对训练数据的拟合能力更强。

在7B和14B模型的设置下,TransMLA模型在数学和代码任务上的准确率显著高于原始的基于GQA的模型。

这表明,TransMLA不仅提升了模型的表达能力,还在特定任务上带来了显著的性能改进。

这种性能提升不仅仅归功于增大了Key-Value中的可训练参数,正交化分解方式的使用也在其中发挥了至关重要的作用。

为了进一步验证这一点,我们进行了对比实验。在这个实验中,我们没有采用正交化分解方式,而是通过Identity Map初始化升维模块来实现TransMLA。

训练后得到的模型在GSM8K数据集上的准确率为82.11%,比基于GQA的模型(81.96%)高出仅0.15%。

这一结果表明,仅仅增加可训练的参数并不能解释TransMLA性能的显著提升,正交化分解方式在提升模型效果方面发挥了关键作用。

目前,更多的实验正在进行中,希望深入探究这一现象背后的原因,进一步验证正交化分解对模型性能的贡献。

后记

本文证明了GQA模型都能转化为MLA形式,给了大模型厂商一个放弃GQA,拥抱MLA的理由,以及快速过渡的方法。

然而收到原始模型结构的限制,TransMLA的结构并不是最优的,如没有对Query进行压缩,没有使用Decoupled RoPE,以及Key和Value使用了独立的latent Vectors。

若要从头训练模型,仍然建议在Deepseek V3的结构上进行创新。TransMLA能够提升目前R1蒸馏Qwen,蒸馏LLaMA项目的效果。

未来我们将会进行这一工作,并开源训练代码和模型。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值