numpy学习笔记-花哨的索引

这篇博客详细介绍了numpy库中的一种高级索引方式——花哨索引,包括如何使用数组进行索引,一维数组作为行列向量的广播行为,以及与其他索引方式(如简单索引、切片、掩码)的组合应用。通过实例展示了如何选择随机点、修改数组元素以及绘制直方图,帮助读者掌握numpy的高级索引技巧。
摘要由CSDN通过智能技术生成

目录

数组举例

简单的索引:使用单个序号索引

花哨的索引:使用数组索引

一维数组作为行列向量被广播

花哨的索引和其他索引的组合

 花哨的索引+简单索引

 花哨的索引+切片

  花哨的索引+掩码

应用举例:选择随机点 

 用花哨的索引修改

应用举例:绘制直方图


数组举例

简单的索引:使用单个序号索引

print('x[1]:', x[1])

花哨的索引:使用数组索引

index = [3, 2, 5]
print('x[index]:', x[index])

使用数组索引可以保持索引数组形状

index2 = np.array([[2, 3], [3, 4]])
print('x[index2]:\n', x[index2])

 

应用举例: 

row = np.array([2, 3, 1, 0])
col = np.array([1, 2, 3, 5])
print('取y的(2, 1)(3, 2)(1, 3)(0, 5):\n', y[row, col])

一维数组作为行列向量被广播

row = np.ar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值