题记
下面是python编写的模拟退火算法实例,包括全过程和解析。
编写main.py文件
main.py文件如下:
import math import random # 初始解:算法从问题的解空间中随机选择一个初始解作为当前解。 # 目标函数:算法需要优化的目标函数定义了解的质量。算法的目标是最小化或最大化这个函数。 # 温度:模拟退火算法引入了一个控制搜索过程的温度参数。温度高时,算法更容易接受比当前解质量差的解;温度逐渐降低,接受劣质解的概率也逐渐减小。 # 邻域操作:算法通过在当前解的邻域中进行随机扰动来生成新的解。邻域操作的设计通常依赖于具体问题。 # 能量差:新解和当前解之间的目标函数值差异被称为能量差。如果新解更优(即目标函数值更小或更大,取决于问题类型),则新解被接受。如果新解劣于当前解,有一定概率接受新解,这个概率由温度和能量差共同决定。 # 降温策略:温度随着迭代逐渐降低,冷却过程的速率由降温策略(通常是指数衰减)决定。随着温度的降低,算法在接受劣质解的概率减小,搜索逐渐趋向于收敛。 # 停止准则:算法根据一定的停止准则(例如达到最大迭代次数、温度降低到某个阈值等)确定何时停止搜索并返回当前解作为最终结果。 # 目标函数(这里以一个简单的二次函数为例) def objective_function(x): return x**2 # 模拟退火算法,主体 def simulated_annealing(max_iterations, initial_temperature, cooling_rate): # 选择初始解,从-10,10 current_solution = random.uniform(-10, 10) # 初始解的目标函数值,作为当前解的能量 current_energy = objective_function(current_solution) # 这个循环用于迭代模拟退火算法,参数为迭代次数 for i in range(max_iterations): # 计算当前温度,温度随着迭代逐渐降低,由初始温度initial_temperature按照指数衰减(以cooling_rate为衰减率)。 temperature = initial_temperature * math.exp(-cooling_rate * i) # 生成新解,通过在当前解的基础上加上一个[-1, 1]范围内的随机数 new_solution = current_solution + random.uniform(-1, 1) new_energy = objective_function(new_solution) # 计算能量差 energy_difference = new_energy - current_energy # 如果新解更优或者以一定概率接受劣解,这是模拟退火算法的关键部分,允许算法在一定程度上接受劣质解,以避免陷入局部最优解,e的x次方 # 从[0.0,1.0) if energy_difference < 0 or random.random() < math.exp(-energy_difference / temperature): #更新解和能量 current_solution = new_solution current_energy = new_energy return current_solution, current_energy # 参数设置 max_iterations = 10000 # 迭代次数 initial_temperature = 100 # 初始温度 cooling_rate = 0.01 # 降温速率 # 运行模拟退火算法 best_solution, best_energy = simulated_annealing(max_iterations, initial_temperature, cooling_rate) print("最优解:", best_solution) print("最优解的目标函数值:", best_energy)
import math
import random
# 初始解:算法从问题的解空间中随机选择一个初始解作为当前解。
# 目标函数:算法需要优化的目标函数定义了解的质量。算法的目标是最小化或最大化这个函数。
# 温度:模拟退火算法引入了一个控制搜索过程的温度参数。温度高时,算法更容易接受比当前解质量差的解;温度逐渐降低,接受劣质解的概率也逐渐减小。
# 邻域操作:算法通过在当前解的邻域中进行随机扰动来生成新的解。邻域操作的设计通常依赖于具体问题。
# 能量差:新解和当前解之间的目标函数值差异被称为能量差。如果新解更优(即目标函数值更小或更大,取决于问题类型),则新解被接受。如果新解劣于当前解,有一定概率接受新解,这个概率由温度和能量差共同决定。
# 降温策略:温度随着迭代逐渐降低,冷却过程的速率由降温策略(通常是指数衰减)决定。随着温度的降低,算法在接受劣质解的概率减小,搜索逐渐趋向于收敛。
# 停止准则:算法根据一定的停止准则(例如达到最大迭代次数、温度降低到某个阈值等)确定何时停止搜索并返回当前解作为最终结果。
# 目标函数(这里以一个简单的二次函数为例)
def objective_function(x):
return x**2
# 模拟退火算法,主体
def simulated_annealing(max_iterations, initial_temperature, cooling_rate):
# 选择初始解,从-10,10
current_solution = random.uniform(-10, 10)
# 初始解的目标函数值,作为当前解的能量
current_energy = objective_function(current_solution)
# 这个循环用于迭代模拟退火算法,参数为迭代次数
for i in range(max_iterations):
# 计算当前温度,温度随着迭代逐渐降低,由初始温度initial_temperature按照指数衰减(以cooling_rate为衰减率)。
temperature = initial_temperature * math.exp(-cooling_rate * i)
# 生成新解,通过在当前解的基础上加上一个[-1, 1]范围内的随机数
new_solution = current_solution + random.uniform(-1, 1)
new_energy = objective_function(new_solution)
# 计算能量差
energy_difference = new_energy - current_energy
# 如果新解更优或者以一定概率接受劣解,这是模拟退火算法的关键部分,允许算法在一定程度上接受劣质解,以避免陷入局部最优解,e的x次方
# 从[0.0,1.0)
if energy_difference < 0 or random.random() < math.exp(-energy_difference / temperature):
#更新解和能量
current_solution = new_solution
current_energy = new_energy
return current_solution, current_energy
# 参数设置
max_iterations = 10000 # 迭代次数
initial_temperature = 100 # 初始温度
cooling_rate = 0.01 # 降温速率
# 运行模拟退火算法
best_solution, best_energy = simulated_annealing(max_iterations, initial_temperature, cooling_rate)
print("最优解:", best_solution)
print("最优解的目标函数值:", best_energy)
执行程序
python main.py
展示图
后记
觉得有用可以点赞或收藏!