找到最大“葫芦”组合

在经典德州扑克中,“葫芦”是一种较强的牌型。它由五张牌组成,其中三张牌面值相同,另外两张牌面值也相同。本文将探讨一个有趣的变形问题:在限定总牌面值的情况下,如何找到符合规则的最大“葫芦”组合。

问题描述

我们需要从给定的一组牌中找到一个满足以下条件的“葫芦”组合:

  1. 该组合由三张相同牌面值的牌 (a) 和两张相同牌面值的牌 (b) 组成;
  2. 牌面值的总和不能超过指定的最大值 max
  3. 在多个可能组合中,优先选择牌面值 (a) 较大的组合,若 (a) 相同则选择 (b) 较大的组合。

牌面值遵循德州扑克的大小规则,即 A(1)> K(13)> Q(12)> J(11)> 10 > 9 > … > 2。

解题思路分析

1. 数据预处理

首先,我们需要统计输入牌组中每张牌的数量。这样做可以快速识别哪些牌出现了三次及以上(用于构成牌 (a)),哪些牌出现了两次及以上(用于构成牌 (b))。通过一个哈希映射(HashMap)来实现统计,能够保证在 (O(n)) 时间复杂度内完成遍历和计数。

2. 特殊情况处理

根据题目中的描述,A牌(1)具有特殊的地位。为了最大化组合的大小,我们需优先考虑是否能使用A作为三张牌或两张牌的一部分,并在满足条件的情况下更新“葫芦”组合的值。

  1. 若 A 出现了三次或更多:则A可能作为三张牌中的 (a)。在这种情况下,我们需要在其他牌中找到数量至少为2的牌 (b),并确保该组合的牌面和在最大值 max 之内。
  2. 若 A 出现了两次:则A可能作为两张牌中的 (b)。在这种情况下,我们需要在其他牌中找到数量至少为3的牌 (a),并判断该组合是否符合最大值要求。
3. 普通情况计算

当 A 不能参与组合或未能找到符合条件的组合时,我们可以在其他牌中寻找“葫芦”:

  • 从具有三张相同牌面值的牌中选择最大的作为 (a);
  • 从具有两张相同牌面值的牌中选择最大的作为 (b);
  • 比较多个组合的总和,以确保不会超过最大值 max
4. 结果输出

在所有符合条件的“葫芦”组合中,我们输出最大牌面值的 (a) 和 (b) 值,若没有符合条件的组合则输出 [0, 0]

Java代码实现

以下是完整的 Java 实现代码:


import java.util.HashMap;
import java.util.Map;


public class bigestHulu {

    public static int[] solution(int n, int max, int[] array) {
        // 由于最大A的牌面值为1,所以要特殊考虑
        // 1. 首先用map记录array中每个元素出现的次数
        Map<Integer, Integer> map = new HashMap<>();
        // 为了后面特殊考虑
        map.put(1,0);

        for (int card : array) {
            map.put(card, map.getOrDefault(card, 0) + 1);
        }

        int x = 0; // 三张相同的牌面值
        int y = 0; // 两张相同的牌面值

        // 2.1 A出现3次以上
        if (map.get(1) >= 3){
            // 遍历map,找到最大的b
            for (Integer b : map.keySet()) {
                if (b != 1 && map.get(b) >= 2){
                    // 没有爆牌
                    if (1 * 3 + b * 2 <= max){
                        if (b > y){
                            x = 1;
                            y = b;
                        }
                    }
                }
            }
            return new int[]{x, y};
        }

        // 2.2 A出现2次
        if (map.get(1) == 2){
            // 遍历map,找到最大的b
            for (Integer b : map.keySet()) {
                if (b != 1 && map.get(b) >= 3){
                    // 没有爆牌
                    if (1 * 2 + b * 3 <= max){
                        if (b > y){
                            x = b;
                            y = 1;
                        }
                    }
                }
            }
            return new int[]{x, y};
        }

        // 3. A不被选择的情况
        for (Integer a : map.keySet()) {
            if (map.get(a) >= 3){
                for (Integer b : map.keySet()) {
                    if (b != a && map.get(b) >= 2){
                        // 没有爆牌
                        if (a * 3 + b * 2 <= max){
                            // 规则是优先比较牌a的大小,若牌a相同则再比较牌b的大小
                            if (a > x || (a == x && b > y)){
                                x = a;
                                y = b;
                            }
                        }
                    }
                }
            }
        }
        if (x == 0 && y == 0){
            return new int[]{0, 0};
        }else {
            return new int[]{x, y};
        }
    }

    public static void main(String[] args) {
        // Add your test cases here

        System.out.println(java.util.Arrays.equals(solution(9, 34, new int[]{6, 6, 6, 8, 8, 8, 5, 5, 1}), new int[]{8, 5}));
        System.out.println(java.util.Arrays.equals(solution(9, 37, new int[]{9, 9, 9, 9, 6, 6, 6, 6, 13}), new int[]{6, 9}));
        System.out.println(java.util.Arrays.equals(solution(9, 40, new int[]{1, 11, 13, 12, 7, 8, 11, 5, 6}), new int[]{0, 0}));
    }

}

复杂度分析与优化

  1. 时间复杂度:主循环遍历了牌组中的元素并将其计数,复杂度为 (O(n))。随后对计数结果进行两重嵌套的选择(在所有可能的三张和两张牌中查找最大组合),这部分复杂度约为 (O(k^2)),其中 (k) 是去重后牌面值的数量。
  2. 空间复杂度:使用了一个 HashMap 来存储牌的计数,空间复杂度为 (O(k))。

博客首页:总是学不会

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值