动态规划·背包问题

一、01背包(每件物品最多只能用一次)

N个物品,容量是V的背包,每个物品体积vi,重量wi,每件物品最多只能用一次。求装进包的最大总价值。

DP问题:

  1. 状态表示 f ( i , j ) f(i,j) f(i,j) (最终所求为 f ( N , V ) f(N,V) f(N,V)
    1. 集合
      1. 所有选法
      2. 条件
        1. 只从前i个物品中选
        2. 总体积<=j
    2. 属性(最大价值、最小代价、元素数量)
  2. 状态计算——集合的划分
    请添加图片描述

二维

(1)状态f[i][j]定义:前 i i i个物品,背包容量 j j j下的最优解(最大价值):

当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N 次决 策,每一次对第 i 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 i 个物品最优解即为前 i − 1 i−1 i1 个物品最优解:

对应代码:f[i][j] = f[i - 1][j]
(3)当前背包容量够,可以选,因此需要决策选与不选第 ii 个物品:

选:f[i][j] = f[i - 1][j - v[i]] + w[i]
不选:f[i][j] = f[i - 1][j]
我们的决策是如何取到最大价值,因此以上两种情况取 max()

#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;

int n,m;
int v[N],w[N];
int f[N][N];//f[i][j],j体积下前i个物品的最大价值

int main(){
    cin>>n>>m;

    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];

    //给f[][]初始化
    //f[0][0~m]=0 但由于全局变量默认为0,不需单独初始化

    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            //当前背包装不下第i个物品
            if(j>=v[i]) f[i][j]=f[i-1][j];
             
            //能装下,需进行决策是否选择第i个物品
            else f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        }

        cout<<f[n][m]<<endl;

        return 0;
}

一维优化

(1)状态f[j]定义:N 件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从m开始,从大到小枚举。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

(4)例如,一维状态第i轮对体积为 33 的物品进行决策,则f[7]由f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]

所以,状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i]

#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;

int n,m;
int v[N],w[N];
int f[N];

int main(){
    cin>>n>>m;

    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];

    //给f[][]初始化
    //f[0][0~m]=0 但由于全局变量默认为0,不需单独初始化

    for(int i=1;i<=n;i++)
        for(int j=m;j>=v[i];j--)//从大到小枚举所有体积
        {
            //f[j]=f[j];
            //右边情况不一定存在
            //if(j>=v[i]) 
                f[j]=max(f[j],f[j-v[i]]+w[i]);
                  /*这个式子等价于 f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]),
                  但是应该为f[i-1][j-v[i]],所以从大到小枚举*/
        }
        cout<<f[m]<<endl;
	    return 0;
}

在一维状态下,少了i件物品这个纬度,用外层for循环,循环到第i轮来表示。f[j]就是指i件物品的条件下背包容量为j下的最大价值。

当循环结束后,外层循环了n次,即到了n件物品,而此时f[j]就是所有物品背包容量j下的最大价值。一维f[j]等价于二维f[n][j]

优化输入

不必分开记录体积和价值,直接边输入边处理。

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int n,m;
int f[N];

int main() 
{
    cin >> n >> m;

    for(int i = 1; i <= n; i++) {
        int v, w;
        cin >> v >> w;      
        for(int j = m; j >= v; j--)
            f[j] = max(f[j], f[j - v] + w);//读入新数据后即更新f[j]
    }

    cout << f[m] << endl;

    return 0;
}

二、完全背包(每件物品可以用无限次)

朴素做法:

  1. 状态表示:f[i][j]

    1. 集合:所有只考虑前i个物品,且总体积不大于j的所有选法
    2. 属性:Max
  2. 状态计算:集合的划分

    可按照第i个物品选多少个来将f[i][j]划分为若干个集合(0~k个)

请添加图片描述

当k=0,f[i][j]=f[i-1,j]

当取k时:

(1)去掉k个物品i

(2)求Max,f[i-1,j-k*v[i]]

(3)再加回来k个物品i

​ 所以 f[i][j]=f[i-1,j-k*v[i]]+k*w[i]

以上两种情况合并,状态转移方程:f[i,j]=f[i-1,j-v[i*k]+w[i]*k]

#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;
int n,m;
int v[N],w[N];
int f[N][N];

int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)//前i个物品
        for(int j=0;j<=m;j++)//总体积不超过j
            for(int k=0;k*v[i]<=j;k++)//枚举第i个物品的个数
                f[i][j]=max(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);
        
    cout<<f[n][m]<<endl;
    
    return 0;
}

优化

f[i,j]=f[i-1,j-v[i*k]+w[i]*k]

展开,取含0~n个第i个物品的价值最大值:

f[i,j]=Max(f[i-1,j],f[i-1,j-v]+w,f[i-1,j-2v]+2w,f[i-1,j-3v]+3w,...)

再将f[i,j-v]展开

f[i,j-v]=Max( f[i-1.j-v], f[i-1,j-2v]+w, f[i-1,j-3v]+2w,...)

观察两式可发现:

Max(f[i-1,j-v]+w,f[i-1,j-2v]+2w,f[i-1,j-3v]+3w,...)

= Max(f[i-1.j-v],f[i-1,j-2v]+w,f[i-1,j-3v]+2w,...)+w

两式合并可得:

完全背包:f[i,j]=Max(f[i-1,j],f[i,j-v]+w)

(对比01背包:f[i,j]=Max(f[i-1,j],f[i-1,j-v]+w))

#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;
int n,m;
int v[N],w[N];
int f[N][N];

int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)//前i个物品
        for(int j=0;j<=m;j++){//总体积不超过j
             f[i][j] = f[i-1][j];
             if(j>=v[i]) f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);
        }
            
        
    cout<<f[n][m]<<endl;
    
    return 0;
}

最终优化:

#include<iostream>
#include<algorithm>
using namespace std;

const int N=1010;
int n,m;
int v[N],w[N];
int f[N];

int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)//前i个物品
        for(int j=v[i];j<=m;j++){//总体积不超过j
             //这里的f[j-v[i]]就是指f[i][j-v[i]],是同一层,所以不需要倒着枚举
             f[j] = max(f[j],f[j-v[i]]+w[i]);
        }
            
        
    cout<<f[m]<<endl;
    
    return 0;
}

三、多重背包(每种物品数目不同)

朴素写法:

  1. 状态表示f[i,j]
    1. 集合:所有只从前i个物品中选,且总体积不超过j
    2. 属性:Max
  2. 状态计算

按照i类选的个数来划分集合
请添加图片描述

状态转移方程:f[i][j]=max(f[i-1][j-v[i]*k]+w[i]*k);k=0,1,2...s[i]

#include<iostream>
#include<algorithm>
using namespace std;

const int N=110;

int n,m;
int v[N],w[N],s[N];
int f[N][N];

int main(){
    cin>>n>>m;
    
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];
    
    for(int i=1;i<=n;i++)//从1~n号物品
        for(int j=0;j<=m;j++)//枚举容量
            for(int k=0;k<=s[i]&&k*v[i]<=j;k++)//枚举第i个物品选多少个
                f[i][j]=max(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);
                
    cout<<f[n][m]<<endl;
}

优化:

f[i,j]  = max(f[i-1,j],f[i-1,j-v]+w,f[i-1,j-2v]+2w,...,f[i-1,j-sv]+sw)
f[i,j-v]=max(          f[i-1,j-v],  f[i-1,j-2v]+w,..,  f[i-1,j-sv]+(s-1)w,f[i-1,j-(s+1v)]+sw)
//根据上两式无法直接求出,故无法用完全背包的优化方式直接优化

这里使用二进制的优化方式

例如:s=1023
    将其按照1248512划分
    即把s划分为若干组,每组最多只能选一次(类似于01背包)
    则可以用这些划分表示出0~1023任意数字
原本需要枚举1024次,现只需枚举10
再如s=200
1248163264  这些可拼凑出0~127
    故再补一个73即可拼凑出0~200
从特殊到一般:
若给出一个一般的s
    1,2,4,8,...,2^k,c   显然有c<2^(k+1)
    1,2,4,8,...,2^k可拼凑出0~2^(k+1)-1种的任意一个数
    加上c可拼凑出c~s种的任意一个数
    因为c<2^(k+1),所有以上两个区间合并后为[0,s]

s -> logs
时间复杂度:从NVS优化为NVlogS

有 N 种物品和一个容量是 V 的背包。

第 ii 种物品最多有 si 件,每件体积是vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤1000
0<V≤2000
0<vi,wi,si≤2000

提示:

本题考查多重背包的二进制优化方法。

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10
#include<iostream>
#include<algorithm>
using namespace std;

const int N=25000,M=2010;

int n,m;
int v[N],w[N];
int f[N];

int main(){
    cin>>n>>m;
    int cnt=0;//划分出来的数字个数
    for(int i=1;i<=n;i++){
        int a,b,s;
        cin>>a>>b>>s;
        int k=1;//每个划分的数
        while(k<=s){//当s还可以继续划分
            cnt++;
            v[cnt]=a*k;//这个划分的总体积
            w[cnt]=b*k;//这个划分的总质量
            s-=k;
            k*=2;//是2的乘方
        }
        if(s>0){//如果s无法被2的次方整分,仍有剩余,此时剩下的这个s相当于最后补上的c
            cnt++;
            v[cnt]=a*s;
            w[cnt]=b*s;
        }
    }
    
    n=cnt;//划分之后一共cnt组,即相当于01背包一共n个物品
    //即把这些打包,最终看作01背包
    
    //转化成了01背包
    for(int i=1;i<=n;i++)
        for(int j=m;j>=v[i];j--)
            f[j]=max(f[j],f[j-v[i]]+w[i]);
            
    cout<<f[m]<<endl;
    
    return 0;
}

四、分组背包(n组物品,每组里最多只能选一个)

  1. 状态表示 f[i,j]

    1. 集合:所有只从前i个物品中选,且总体积不超过j
    2. 属性:集合中所有选法中的价值的最大值
  2. 状态计算

    枚举第i组物品选哪个or不选

请添加图片描述

#include<iostream>
#include<algorithm>
using namespace std;

const int N=110;

int n,m;
int v[N][N],w[N][N],s[N];
int f[N];

int main(){
    cin>>n>>m;
    
    for(int i=1;i<=n;i++){
        cin>>s[i];
        for(int j=0;j<s[i];j++)
            cin>>v[i][j]>>w[i][j];
    }
    
    //状态转移时,如果用的有上一层的数据,则从大到小枚举,如果用的都是本层的,则从小到大枚举
    for(int i=1;i<=n;i++)//枚举1~n组
        for (int j = m; j >= 0; j -- )//先枚举体积,倒着枚举这样就不会被自己更新
            for(int k=0;k<s[i];k++)//枚举第i组中的s[i]个物品
                //这里与其他01背包有些不同,因为在枚举j的时候还没有枚举每一个数,故需特判
                if(v[i][k]<=j)//这个物品体积足够小,可以选
                    f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
    cout<<f[m]<<endl;
    
    return 0;
}

参考:
https://www.acwing.com/solution/content/1374/

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值