回溯算法的特点
递归:通过递归调用函数逐步构建解。
回溯:当发现当前路径不满足条件时,回退到上一步继续尝试其他可能性。
剪枝:通过提前终止不必要的搜索,提高算法效率。
经典例子及其Python实现
1. N皇后问题
问题描述:在N×N的棋盘上放置N个皇后,使得任意两个皇后不在同一行、同一列或同一对角线上。
实现过程:
逐行放置皇后,尝试每一列。
判断是否满足条件,若满足则继续下一行,若不满足则回退。
直到所有行都放置完毕,输出解。
Python代码:
def solve_n_queens(n):
def is_safe(board, row, col):
for i in range(row):
if board[i] == col or abs(board[i] - col) == row - i:
return False
return True
def solve(board, row):
if row == n:
result.append(board[:])
return
for col in range(n):
if is_safe(board, row, col):
board[row] = col
solve(board, row + 1)
board[row] = -1
result = []
board = [-1] * n
solve(board, 0)
return result
# 示例
n = 4
solutions = solve_n_queens(n)
for sol in solutions:
print(sol)
2. 全排列问题
问题描述:给定一个数组,求出所有可能的排列。
实现过程:
逐个交换数组元素,生成不同排列。
递归地继续生成排列。
回退并交换回原来的顺序。
Python代码:
def permute(nums):
def backtrack(start):
if start == len(nums):
result.append(nums[:])
return
for i in range(start, len(nums)):
nums[start], nums[i] = nums[i], nums[start]
backtrack(start + 1)
nums[start], nums[i] = nums[i], nums[start]
result = []
backtrack(0)
return result
# 示例
nums = [1, 2, 3]
print(permute(nums))
3. 子集和问题
问题描述:给定一个集合,求出所有可能的子集。
实现过程:
递归生成子集。
每次选择是否包含当前元素。
递归继续生成下一个元素的子集。
Python代码:
def subsets(nums):
def backtrack(start, path):
result.append(path[:])
for i in range(start, len(nums)):
path.append(nums[i])
backtrack(i + 1, path)
path.pop()
result = []
backtrack(0, [])
return result
# 示例
nums = [1, 2, 3]
print(subsets(nums))
4. 骑士巡游问题
问题描述:在N×N的棋盘上,骑士从某一位置出发,经过每个方格一次且仅一次。
实现过程:
递归尝试每一步。
判断是否满足骑士走法且未访问过该方格。
若满足则继续下一步,否则回退。
Python代码:def solve_knights_tour(n):
def is_safe(x, y, board):
return 0 <= x < n and 0 <= y < n and board[x][y] == -1
def solve(x, y, movei, board, x_move, y_move):
if movei == n * n:
return True
for k in range(8):
next_x, next_y = x + x_move[k], y + y_move[k]
if is_safe(next_x, next_y, board):
board[next_x][next_y] = movei
if solve(next_x, next_y, movei + 1, board, x_move, y_move):
return True
board[next_x][next_y] = -1
return False
board = [[-1 for _ in range(n)] for _ in range(n)]
x_move = [2, 1, -1, -2, -2, -1, 1, 2]
y_move = [1, 2, 2, 1, -1, -2, -2, -1]
board[0][0] = 0
if solve(0, 0, 1, board, x_move, y_move):
return board
else:
return "No solution exists"
# 示例
n = 5
solution = solve_knights_tour(n)
for row in solution:
print(row)