LoRA 及其衍生技术详解

LoRA 形形色色,种类繁多。图片由 Lucas George Wendt 在 Unsplash 上提供。

低秩自适应(Low-Rank Adaptation,LoRA)可以被视为在针对特定任务高效训练大语言模型方面的重大突破。近年来,这项技术在诸多应用领域获得了广泛认可,并促进了学术界对如何优化其核心技术路线的持续探索,以期进一步提升模型性能或加快模型训练速度。

在本文中,我打算概要介绍一些 LoRA 的不同形式,它们有望以不同的方式增强 LoRA 的能力。我将首先介绍原始 LoRA 技术的基本概念,然后介绍 LoRA+、VeRA、LoRA-FA、LoRA-drop、AdaLoRA、DoRA 和 Delta-LoRA。我将介绍每种方法的基本概念和主要思想,并展示这些方法与原始 LoRA 技术的不同之处。除非对于讲解某项技术的基本概念来说比较重要,否则我会避免涉及技术细节,并且也不会详细讨论这些技术的相关评估问题。对此感兴趣的读者,可通过阅读文末提供的参考文献深入了解。

01 LoRA

LoRA 的主要思想是在预训练的权重矩阵 W 旁边添加两个较小的可调整矩阵 A 和 B,而不更改 W 的参数。图片来自 [1]。

低秩自适应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值