Redis的string类型使用

第一步:添加缓存

以若依岗位代码为例

一:首先从redis中查询岗位信息,如果查询到了则直接返回。

二:如果redis中没有数据,则直接从数据库中查询。查询后放到redis并返回

package com.ruoyi.system.service.impl;

import java.util.List;

import com.alibaba.fastjson2.JSON;
import lombok.AllArgsConstructor;
import lombok.RequiredArgsConstructor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Service;
import com.ruoyi.common.constant.UserConstants;
import com.ruoyi.common.exception.ServiceException;
import com.ruoyi.common.utils.StringUtils;
import com.ruoyi.system.domain.SysPost;
import com.ruoyi.system.mapper.SysPostMapper;
import com.ruoyi.system.mapper.SysUserPostMapper;
import com.ruoyi.system.service.ISysPostService;

/**
 * 岗位信息 服务层处理
 * 
 * @author ruoyi
 */
@Service
@RequiredArgsConstructor
public class SysPostServiceImpl implements ISysPostService
{
    private final SysPostMapper postMapper;

    private final SysUserPostMapper userPostMapper;

    private final StringRedisTemplate redisTemplate;

    /**
     * 岗位前缀
     */
    private static final String POST_KEY = "sys:post:";

    /**
     * 查询岗位信息集合
     * 
     * @param post 岗位信息
     * @return 岗位信息集合
     */
    @Override
    public List<SysPost> selectPostList(SysPost post)
    {
        return postMapper.selectPostList(post);
    }

    /**
     * 查询所有岗位
     * 
     * @return 岗位列表
     */
    @Override
    public List<SysPost> selectPostAll()
    {
        return postMapper.selectPostAll();
    }

    /**
     * 通过岗位ID查询岗位信息
     * 
     * @param postId 岗位ID
     * @return 角色对象信息
     */
    @Override
    public SysPost selectPostById(Long postId)
    {
        // 一:从redis中查询缓存是否存在
        String postInfo = redisTemplate.opsForValue().get(POST_KEY + postId);
        // 二:判定是否存在
        if (StringUtils.isNotEmpty(postInfo)){
            // 转换为bean
            SysPost sysPost = JSON.parseObject(postInfo, SysPost.class);
            return sysPost;
        }
        // 三:如果存在直接返回
        SysPost post = postMapper.selectPostById(postId);
        // 四:不存在则查询数据库判定数据中是否存在
        if (StringUtils.isNull(post)){
            return null;
        }
        redisTemplate.opsForValue().set(POST_KEY + postId, JSON.toJSONString(post));
        // 五:如果存在则放到redis中,并返回
        return post;
    }

    /**
     * 根据用户ID获取岗位选择框列表
     * 
     * @param userId 用户ID
     * @return 选中岗位ID列表
     */
    @Override
    public List<Long> selectPostListByUserId(Long userId)
    {
        return postMapper.selectPostListByUserId(userId);
    }

    /**
     * 校验岗位名称是否唯一
     * 
     * @param post 岗位信息
     * @return 结果
     */
    @Override
    public boolean checkPostNameUnique(SysPost post)
    {
        Long postId = StringUtils.isNull(post.getPostId()) ? -1L : post.getPostId();
        SysPost info = postMapper.checkPostNameUnique(post.getPostName());
        if (StringUtils.isNotNull(info) && info.getPostId().longValue() != postId.longValue())
        {
            return UserConstants.NOT_UNIQUE;
        }
        return UserConstants.UNIQUE;
    }

    /**
     * 校验岗位编码是否唯一
     * 
     * @param post 岗位信息
     * @return 结果
     */
    @Override
    public boolean checkPostCodeUnique(SysPost post)
    {
        Long postId = StringUtils.isNull(post.getPostId()) ? -1L : post.getPostId();
        SysPost info = postMapper.checkPostCodeUnique(post.getPostCode());
        if (StringUtils.isNotNull(info) && info.getPostId().longValue() != postId.longValue())
        {
            return UserConstants.NOT_UNIQUE;
        }
        return UserConstants.UNIQUE;
    }

    /**
     * 通过岗位ID查询岗位使用数量
     * 
     * @param postId 岗位ID
     * @return 结果
     */
    @Override
    public int countUserPostById(Long postId)
    {
        return userPostMapper.countUserPostById(postId);
    }

    /**
     * 删除岗位信息
     * 
     * @param postId 岗位ID
     * @return 结果
     */
    @Override
    public int deletePostById(Long postId)
    {
        return postMapper.deletePostById(postId);
    }

    /**
     * 批量删除岗位信息
     * 
     * @param postIds 需要删除的岗位ID
     * @return 结果
     */
    @Override
    public int deletePostByIds(Long[] postIds)
    {
        for (Long postId : postIds)
        {
            SysPost post = selectPostById(postId);
            if (countUserPostById(postId) > 0)
            {
                throw new ServiceException(String.format("%1$s已分配,不能删除", post.getPostName()));
            }
        }
        return postMapper.deletePostByIds(postIds);
    }

    /**
     * 新增保存岗位信息
     * 
     * @param post 岗位信息
     * @return 结果
     */
    @Override
    public int insertPost(SysPost post)
    {
        return postMapper.insertPost(post);
    }

    /**
     * 修改保存岗位信息
     * 
     * @param post 岗位信息
     * @return 结果
     */
    @Override
    public int updatePost(SysPost post)
    {
        return postMapper.updatePost(post);
    }
}

这是一个简单的添加缓存功能。

第二步:缓存更新策略

主动更新有几种方式?

第一种是常用的

第二种市面上三方的工具少

第三种感觉有点不靠谱。一致性和可靠性都会存在问题,如果redis挂了就出现了一些问题

第三种有疑问其中2种都可以。但是需要具体的分析一下?

先删除缓存,在操作数据库

分析下正常情况:

线程1代表业务人员:业务人员先删除缓存,然后更新数据库

线程2代表客户:客户人员查询缓存未命中,然后写入缓存

非正常情况:

线程1代表业务人员:业务人员先删除缓存。但是由于更新数据库业务复杂,没有更新完。因为没                                    有加锁的原因

线程2代表客户:在数据库未更新完的情况下,客户点击查询结果缓存中没有直接查询到数据库,

                           但是数据库还是10,造成了缓存也是10。最终出现了数据库是20,缓存10。

先操作数据库,在删除缓存

正常情况下:

线程2代表业务人员:业务人员更新数据库,然后删除缓存

线程1代表客户:客户查询缓存未命中,在查询数据库写入缓存

非正常业务:这种情况是在

这种情况是线程1查询缓存,缓存正好过期,然后他在查询玩数据库后,准备写入缓存

恰好有一个在更新数据库为20,然后删除缓存,但是那个写入缓存还没开始执行,等他删除缓存后开始执行了。这就造成了脏数据。但是这种情况是在毫秒级别发生的,太需要巧合了。

第三步:案例实现

之前做了岗位的缓存机制:现在实现一个缓存超时剔除和主动更新的策略

1:根据id查询岗位,如果未命中查询数据库,将数据库数据放到缓存里面,并添加超时时间

2:根据id修改岗位是,先修改数据库,在删除缓存

实现超时剔除

 /**
     * 通过岗位ID查询岗位信息
     *
     * @param postId 岗位ID
     * @return 角色对象信息
     */
    @Override
    public SysPost selectPostById(Long postId) {
        // 一:从redis中查询缓存是否存在
        String postInfo = redisTemplate.opsForValue().get(POST_KEY + postId);
        // 二:判定是否存在
        if (StringUtils.isNotEmpty(postInfo)) {
            // 转换为bean
            SysPost sysPost = JSON.parseObject(postInfo, SysPost.class);
            return sysPost;
        }
        // 三:如果存在直接返回
        SysPost post = postMapper.selectPostById(postId);
        // 四:不存在则查询数据库判定数据中是否存在
        if (StringUtils.isNull(post)) {
            return null;
        }
        redisTemplate.opsForValue().set(POST_KEY + postId, JSON.toJSONString(post),
                                            RedisConstants.THIRTY_MINUTES,
                                            TimeUnit.MINUTES);
        // 五:如果存在则放到redis中,并返回
        return post;
    }

直接设置过期时间,并且设置为分钟就可以实现缓存自动剔除了。

实现主动更新策略

   /**
     * 修改保存岗位信息
     *
     * @param post 岗位信息
     * @return 结果
     */
    @Override
    public int updatePost(SysPost post) {
        if (StringUtils.isNull(post.getPostId())) {
            throw new ServiceException("id不存在");
        }
        // 修改岗位信息
        int count = postMapper.updatePost(post);
        if (count > 0) {
            redisTemplate.delete(POST_KEY + post.getPostId());
            return count;
        }
        return 0;
    }

这种直接可以实现主动更新策略

结果点击岗位详情,可以看到已经

更新信息的时候则删除缓存了。

第四步:缓存穿透

缓存穿透:当redis和数据库都没有请求的数据时,这样缓存会不生效,所有请求都会打到redis中

解决方案:。2:布隆过滤。

1:缓存空对象

      优点:实现简单。可以设置一个时间短的TTL。能解决占内存

      缺点:可能站内存。可能会一直给你一个不存在id

2:布隆过滤

      优点:内存占用少,少量key。

      缺点:不一定准确。

给岗位查询解决缓存穿透的方案:流程图

代码修改:

 /**
     * 通过岗位ID查询岗位信息
     *
     * @param postId 岗位ID
     * @return 角色对象信息
     */
    @Override
    public SysPost selectPostById(Long postId) {
        // 一:从redis中查询缓存是否存在
        String postInfo = redisTemplate.opsForValue().get(POST_KEY + postId);
        // 二:判定是否存在
        if (StringUtils.isNotEmpty(postInfo)) {
            // 转换为bean
            SysPost sysPost = JSON.parseObject(postInfo, SysPost.class);
            return sysPost;
        }
        // 这边还有点绕,不是空的,直接返回数据,但是如果不是null说明里面是空字符串就直接返回错误信息
        if (StringUtils.isNotNull(postInfo)) {
            throw new ServiceException("数据不存在");
        }
        // 三:如果存在直接返回
        SysPost post = postMapper.selectPostById(postId);
        // 四:不存在则查询数据库判定数据中是否存在
        if (StringUtils.isNull(post)) {
            // 然后给控制写入redis
            redisTemplate.opsForValue().set(POST_KEY + postId, StringUtils.EMPTY,
                    RedisConstants.THIRTY_MINUTES,
                    TimeUnit.MINUTES);
            return null;
        }
        redisTemplate.opsForValue().set(POST_KEY + postId, JSON.toJSONString(post),
                RedisConstants.THIRTY_MINUTES,
                TimeUnit.MINUTES);
        // 五:如果存在则放到redis中,并返回
        return post;
    }

第五步:缓存雪崩

第六步:缓存击穿

2种方案:互斥锁方案和逻辑删除方案

方案对比:

第七种:利用互斥锁来解决岗位缓存击穿的问题

 /**
     * 通过岗位ID查询岗位信息
     *
     * @param postId 岗位ID
     * @return 角色对象信息
     */
    @Override
    public SysPost selectPostById(Long postId) {
        // 缓存穿透解决方案
        // queryWithPost(postId);
        // 缓存击穿
        return queryWithMutex(postId);

    }
  /**
     * 缓存击穿问题
     * @param postId id
     * @return 返回值
     */
    @SneakyThrows
    private SysPost queryWithMutex(Long postId) {

        // 一:从redis中查询缓存是否存在
        String postInfo = redisTemplate.opsForValue().get(POST_KEY + postId);
        // 二:判定是否存在
        if (StringUtils.isNotEmpty(postInfo)) {
            // 转换为bean
            SysPost sysPost = JSON.parseObject(postInfo, SysPost.class);
            return sysPost;
        }
        // 这边还有点绕,不是空的,直接返回数据,但是如果不是null说明里面是空字符串就直接返回错误信息
        if (StringUtils.isNotNull(postInfo)) {
            throw new ServiceException("数据不存在");
        }
        // 尝试获取互斥锁
        String lockKey = "lock:post:" + postId;
        // 如果失败了,说明可能其他线程在获取取,所以需要休眠一下
        Boolean lock = getLock(lockKey);
        if (!lock) {
            Thread.sleep(NUMBER_1000);
            // 递归 在此查询,如果有数据,直接返回
            return queryWithMutex(postId);
        }
        // 三:如果存在直接返回
        SysPost post = postMapper.selectPostById(postId);
        // 四:不存在则查询数据库判定数据中是否存在
        if (StringUtils.isNull(post)) {
            // 然后给控制写入redis
            redisTemplate.opsForValue().set(POST_KEY + postId, StringUtils.EMPTY,
                    THIRTY_MINUTES,
                    TimeUnit.MINUTES);
            return null;
        }
        redisTemplate.opsForValue().set(POST_KEY + postId, JSON.toJSONString(post),
                THIRTY_MINUTES,
                TimeUnit.MINUTES);
        // 五:如果存在则放到redis中,并返回
        // 释放锁
        deleteLock(lockKey);
        return post;
    }

    /**
     * 获取锁
     *
     * @param key 值
     * @return 成功失败
     */
    private Boolean getLock(String key) {
        return redisTemplate.opsForValue().setIfAbsent(key, String.valueOf(UUID.randomUUID()), THIRTY_MINUTES, TimeUnit.SECONDS);
    }

    /**
     * 是否锁
     *
     * @param key 值
     * @return 成功失败
     */
    private Boolean deleteLock(String key) {
        return redisTemplate.delete(key);
    }

第八种:利用逻辑处理处理岗位缓存击穿问题

这种方案感觉不太好,保证不了数据一致性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值