🔥🔥🔥本篇笔记所对应的视频:🚀阿里巴巴颠覆视频创作领域!全新Wan2.1-VACE视频生成大模型震撼发布,保姆级教程手把手教你本地与Colab双平台部署,轻松生成电影级AI大片!_哔哩哔哩_bilibili
在AI视觉生成领域,通义万相Wan2.1-VACE-14B的发布无疑是一场技术革命。作为当前业界功能最全面、创新性极强的开源视频生成与编辑模型,它不仅刷新了视频AI模型的能力上限,更以一站式、全能型的特性,极大地拓展了创作者的想象空间。
全能型统一模型,打破单一任务壁垒
以往的视频AI模型多为“单一专家”,每一个模型只擅长某一项任务,用户需要在不同工具间频繁切换。而Wan2.1-VACE-14B则彻底打破了这一壁垒。它支持文本生成视频、图像生成视频、视频重绘、局部编辑、背景与时长扩展等多种任务,并且这些能力可以自由组合,实现复杂的多任务协同。这意味着,创作者只需一个模型,即可完成从灵感到成片的全部流程,极大提升了效率和灵活性。
多模态输入,极致可控的创作体验
Wan2.1-VACE-14B采用了创新的多模态输入机制,支持文本、图像、视频帧、掩码和多种控制信号(如人体姿态、运动光流、结构保持、深度图、布局、线稿等)。创作者可以通过这些输入,精准控制视频中人物的动作、场景的布局,甚至细致到某一局部区域的替换、增加或删除。比如,你可以只改变视频背景,保留主体不变,或通过首尾帧补全生成完整视频,真正实现“所见即所得”的创作自由。
高效架构,消费级显卡也能畅跑
Wan2.1-VACE-14B基于扩散Transformer架构和自研的Wan-VAE时空压缩模型,实现了对1080P长视频的高效编解码。即使是参数量高达14B的旗舰版本,也支持480P和720P分辨率的视频生成;而1.3B版本则能在普通消费级显卡上流畅运行,5秒480P视频仅需4分钟生成。无论是个人创作者还是专业团队,都能轻松上手,无需昂贵硬件投入。
中文理解领先,全面超越同类模型
在多项基准测试中,Wan2.1-VACE-14B不仅在视频质量、时空一致性、运动表现等方面全面超越开源与闭源同类模型,尤其在中文指令理解和文本生成能力上表现突出。它是首个支持中英文文本生成的视频模型,为中文内容创作者带来了前所未有的便利和创意空间。
开源生态,推动AI视频创作民主化
作为开源项目,Wan2.1-VACE-14B的代码与权重已在GitHub、Hugging Face等平台开放下载,极大降低了AI视频创作的门槛。开发者和创意工作者可以基于该模型进行二次开发、定制化训练,推动AI视频技术的普及和创新。
🔥开启WSL2方式
🔥本地部署方式
# 安装Miniconda(如果尚未安装)
wget <https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh> -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
eval "$($HOME/miniconda/bin/conda shell.bash hook)"
echo 'export PATH="$HOME/miniconda/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc
conda create -n ai python=3.11 -y && conda activate ai
sudo apt update && sudo apt install nvidia-cuda-toolkit -y
conda install -c conda-forge flash-attn -y
pip install torch==2.7.0 torchvision==0.22.0 --index-url <https://download.pytorch.org/whl/cu126>
git clone <https://github.com/Wan-Video/Wan2.1.git> && cd Wan2.1
pip install -r requirements.txt
pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-VACE-1.3B --local-dir ./Wan2.1-VACE-1.3B
python gradio/vace.py --ckpt_dir ./Wan2.1-VACE-1.3B