路径规划算法
在机器人路径规划仿真软件中,路径规划算法是核心组件之一,它负责生成机器人从起始点到目标点的安全、高效路径。本节将详细介绍几种常用的路径规划算法,并展示如何在OMPL中实现这些算法。我们将涵盖以下内容:
-
快速扩展随机树 (RRT)
-
概率路线图 (PRM)
-
A 算法*
-
Dijkstra 算法
-
基于采样的路径规划算法
1. 快速扩展随机树 (RRT)
快速扩展随机树(Rapidly-exploring Random Trees, RRT)是一种高效的路径规划算法,特别适用于高维空间和复杂环境。RRT通过随机采样和逐步扩展树结构来探索环境,直到找到从起始点到目标点的路径。
原理
RRT算法的基本步骤如下:
-
初始化:创建一个根节点,通常为起始点。
-
随机采样:在配置空间中随机选择一个点。
-
最近节点:在树中找到距离采样点最近的节点。
-
扩展树:从最近节点向采样点扩展一个新的节点,如果新节点在自由空间内,则将其加入树中。
-
检查目标:如果新节点足够接近目标点,则将目标点加入树中,生成路径。
-
生成路径:从目标点回溯到起始点,生成路径。
实现
在OMPL中实现RRT算法非常简单。首先,确保你已经安装了OMPL库。接下来,我们将通过一个具体的例子来展示如何使用OMPL进行RRT路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/rrt/RRT.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建RRT规划器
ompl::geometric::RRT rrt(si);
rrt.setProblemDefinition(pdef);
rrt.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = rrt.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
RRT规划器:创建一个
RRT
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
2. 概率路线图 (PRM)
概率路线图(Probabilistic Roadmap, PRM)是一种基于采样的路径规划算法,适用于静态环境中的路径规划。PRM通过构建一个连接自由空间中样本点的图,然后在图中寻找从起始点到目标点的路径。
原理
PRM算法的基本步骤如下:
-
采样:在配置空间中随机采样多个点,确保这些点在自由空间内。
-
连接:将采样点与其附近的自由空间内的点连接起来,形成一个图。
-
图搜索:使用图搜索算法(如A*或Dijkstra)在图中寻找从起始点到目标点的路径。
实现
在OMPL中实现PRM算法也非常简单。以下是一个具体的例子,展示如何使用OMPL进行PRM路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/prm/PRM.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建PRM规划器
ompl::geometric::PRM prm(si);
prm.setProblemDefinition(pdef);
prm.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = prm.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
A*规划器:创建一个
AStar
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
4. Dijkstra 算法
Dijkstra算法是一种经典的图搜索算法,适用于静态环境中的路径规划。Dijkstra算法通过逐步扩展最短路径树来找到从起始点到目标点的最短路径。
原理
Dijkstra算法的基本步骤如下:
-
初始化:将起始点的路径长度设为0,其他所有节点的路径长度设为无穷大。
-
选择节点:从未处理的节点中选择路径长度最小的节点。
-
扩展节点:从当前节点向其邻居节点扩展,更新邻居节点的路径长度。
-
更新列表:将扩展的邻居节点加入未处理列表,将当前节点标记为已处理。
-
检查目标:如果目标点的路径长度已更新,则生成路径。
-
生成路径:从目标点回溯到起始点,生成路径。
实现
在OMPL中实现Dijkstra算法需要使用ompl::geometric::Dijkstra
类。以下是一个具体的例子,展示如何使用OMPL进行Dijkstra路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/dijkstra/Dijkstra.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建Dijkstra规划器
ompl::geometric::Dijkstra dijkstra(si);
dijkstra.setProblemDefinition(pdef);
dijkstra.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = dijkstra.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
Dijkstra规划器:创建一个
Dijkstra
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
5. 基于采样的路径规划算法
基于采样的路径规划算法是一类通过随机采样来探索配置空间的算法。这些算法特别适用于高维空间和复杂环境,能够在不完全了解环境的情况下找到可行路径。常见的基于采样的路径规划算法包括RRT和PRM,但OMPL还提供了其他几种基于采样的算法,如RRT-Connect和BIT*。
原理
基于采样的路径规划算法的基本步骤如下:
-
初始化:创建一个空的图或树。
-
随机采样:在配置空间中随机选择多个点。
-
连接:将采样点与其附近的自由空间内的点连接起来,形成一个图或树。
-
图搜索:使用图搜索算法(如A*或Dijkstra)在图中寻找从起始点到目标点的路径。
-
路径优化:对找到的路径进行优化,以提高路径的质量。
实现
在OMPL中实现基于采样的路径规划算法非常简单。以下是一个具体的例子,展示如何使用OMPL进行RRT-Connect路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/rrt/RRTConnect.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建RRT-Connect规划器
ompl::geometric::RRTConnect rrt_connect(si);
rrt_connect.setProblemDefinition(pdef);
rrt_connect.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = rrt_connect.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
RRT-Connect规划器:创建一个
RRTConnect
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
总结
通过上述示例,我们可以看到OMPL库提供了丰富的路径规划算法实现,包括RRT、PRM、A*、Dijkstra和RRT-Connect等。每种算法都有其适用的场景和特点,选择合适的算法可以显著提高路径规划的效率和质量。希望这些示例能帮助你更好地理解和使用OMPL进行机器人路径规划。## 3. A* 算法
A算法是一种启发式搜索算法,广泛应用于静态环境中的路径规划。A算法通过最小化从起始点到当前点的实际代价和从当前点到目标点的估计代价之和来寻找最优路径。
原理
A*算法的基本步骤如下:
-
初始化:将起始点加入开放列表(open list),并将其估计代价设为从起始点到目标点的启发式代价。
-
选择节点:从未处理的节点中选择估计代价最小的节点。
-
扩展节点:从当前节点向其邻居节点扩展,更新邻居节点的估计代价和实际代价。
-
更新列表:将扩展的邻居节点加入开放列表,将当前节点标记为已处理。
-
检查目标:如果目标点的估计代价已更新,则生成路径。
-
生成路径:从目标点回溯到起始点,生成路径。
实现
在OMPL中实现A算法需要使用ompl::geometric::AStar
类。以下是一个具体的例子,展示如何使用OMPL进行A路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/astar/AStar.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建A*规划器
ompl::geometric::AStar a_star(si);
a_star.setProblemDefinition(pdef);
a_star.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = a_star.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
A*规划器:创建一个
AStar
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
4. Dijkstra 算法
Dijkstra算法是一种经典的图搜索算法,适用于静态环境中的路径规划。Dijkstra算法通过逐步扩展最短路径树来找到从起始点到目标点的最短路径。
原理
Dijkstra算法的基本步骤如下:
-
初始化:将起始点的路径长度设为0,其他所有节点的路径长度设为无穷大。
-
选择节点:从未处理的节点中选择路径长度最小的节点。
-
扩展节点:从当前节点向其邻居节点扩展,更新邻居节点的路径长度。
-
更新列表:将扩展的邻居节点加入未处理列表,将当前节点标记为已处理。
-
检查目标:如果目标点的路径长度已更新,则生成路径。
-
生成路径:从目标点回溯到起始点,生成路径。
实现
在OMPL中实现Dijkstra算法需要使用ompl::geometric::Dijkstra
类。以下是一个具体的例子,展示如何使用OMPL进行Dijkstra路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/dijkstra/Dijkstra.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建Dijkstra规划器
ompl::geometric::Dijkstra dijkstra(si);
dijkstra.setProblemDefinition(pdef);
dijkstra.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = dijkstra.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
Dijkstra规划器:创建一个
Dijkstra
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。
5. 基于采样的路径规划算法
基于采样的路径规划算法是一类通过随机采样来探索配置空间的算法。这些算法特别适用于高维空间和复杂环境,能够在不完全了解环境的情况下找到可行路径。常见的基于采样的路径规划算法包括RRT和PRM,但OMPL还提供了其他几种基于采样的算法,如RRT-Connect和BIT*。
原理
基于采样的路径规划算法的基本步骤如下:
-
初始化:创建一个空的图或树。
-
随机采样:在配置空间中随机选择多个点。
-
连接:将采样点与其附近的自由空间内的点连接起来,形成一个图或树。
-
图搜索:使用图搜索算法(如A*或Dijkstra)在图中寻找从起始点到目标点的路径。
-
路径优化:对找到的路径进行优化,以提高路径的质量。
实现
在OMPL中实现基于采样的路径规划算法非常简单。以下是一个具体的例子,展示如何使用OMPL进行RRT-Connect路径规划。
代码示例
#include <ompl/base/States.h>
#include <ompl/base/StateSpace.h>
#include <ompl/base/SpaceInformation.h>
#include <ompl/geometric/planners/rrt/RRTConnect.h>
#include <ompl/base/ProblemDefinition.h>
#include <ompl/base/goals/GoalState.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/tools/benchmark/Benchmark.h>
#include <iostream>
// 定义一个简单的环境
class SimpleStateValidityChecker : public ompl::base::StateValidityChecker
{
public:
SimpleStateValidityChecker(const ompl::base::SpaceInformationPtr &si) : ompl::base::StateValidityChecker(si) {}
bool isValid(const ompl::base::State *state) const override
{
const auto *se2state = state->as<ompl::base::SE2StateSpace::StateType>();
double x = se2state->getX();
double y = se2state->getY();
// 检查是否在障碍物内
if (x > 0.5 && x < 1.5 && y > 0.5 && y < 1.5)
return false;
return true;
}
};
int main(int argc, char **argv)
{
// 创建一个SE2状态空间(平面空间)
ompl::base::StateSpacePtr space(new ompl::base::SE2StateSpace());
// 设置状态空间的边界
ompl::base::RealVectorBounds bounds(2);
bounds.setLow(-2);
bounds.setHigh(2);
space->as<ompl::base::SE2StateSpace>()->setBounds(bounds);
// 创建空间信息对象
ompl::base::SpaceInformationPtr si(new ompl::base::SpaceInformation(space));
// 设置状态有效性检查器
si->setStateValidityChecker(std::make_shared<SimpleStateValidityChecker>(si));
// 设置碰撞检测
si->setup();
// 创建问题定义对象
ompl::base::ProblemDefinitionPtr pdef(new ompl::base::ProblemDefinition(si));
// 设置起始点和目标点
ompl::base::State *start = space->allocState();
start->as<ompl::base::SE2StateSpace::StateType>()->setX(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setY(-1.5);
start->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
ompl::base::State *goal = space->allocState();
goal->as<ompl::base::SE2StateSpace::StateType>()->setX(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setY(1.5);
goal->as<ompl::base::SE2StateSpace::StateType>()->setYaw(0.0);
pdef->setStartAndGoalStates(start, goal, 0.05);
// 创建RRT-Connect规划器
ompl::geometric::RRTConnect rrt_connect(si);
rrt_connect.setProblemDefinition(pdef);
rrt_connect.setup();
// 运行规划器
ompl::time::point start_time = ompl::time::now();
bool solved = rrt_connect.solve(10.0);
ompl::time::point end_time = ompl::time::now();
if (solved)
{
std::cout << "Found solution!" << std::endl;
// 打印路径
ompl::base::PathPtr path = pdef->getSolutionPath();
path->print(std::cout);
}
else
{
std::cout << "No solution found" << std::endl;
}
std::cout << "Planning time: " << ompl::time::seconds(end_time - start_time) << " seconds" << std::endl;
// 释放内存
space->freeState(start);
space->freeState(goal);
return 0;
}
代码解释
-
状态空间定义:我们使用
SE2StateSpace
来表示平面空间,其中每个状态包含x、y坐标和方向角。 -
边界设置:通过
RealVectorBounds
设置状态空间的边界。 -
空间信息对象:创建一个
SpaceInformation
对象,用于管理状态空间的信息。 -
状态有效性检查器:定义一个简单的状态有效性检查器
SimpleStateValidityChecker
,检查状态是否在障碍物内。 -
问题定义:创建一个
ProblemDefinition
对象,设置起始点和目标点。 -
RRT-Connect规划器:创建一个
RRTConnect
规划器,设置问题定义并运行规划器。 -
路径输出:如果找到解决方案,打印路径并输出规划时间。