P4103 [HEOI2014] 大工程

# [HEOI2014] 大工程

## 题目描述

国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。

我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。

在 $2$ 个国家 $a,b$ 之间建一条新通道需要的代价为树上 $a,b$ 的最短路径的长度。

现在国家有很多个计划,每个计划都是这样,我们选中了 $k$ 个点,然后在它们两两之间 新建 $\dbinom{k}{2}$ 条新通道。

现在对于每个计划,我们想知道: 
1. 这些新通道的代价和。
2. 这些新通道中代价最小的是多少。
3. 这些新通道中代价最大的是多少。

## 输入格式

第一行 $n$ 表示点数。

接下来 $n-1$ 行,每行两个数 $a,b$ 表示 $a$ 和 $b$ 之间有一条边。点从 $1$ 开始标号。

接下来一行 $q$ 表示计划数。对每个计划有 $2$ 行,第一行 $k$ 表示这个计划选中了几个点。

第二行用空格隔开的 $k$ 个互不相同的数表示选了哪 $k$ 个点。

## 输出格式

输出 $q$ 行,每行三个数分别表示代价和,最小代价,最大代价。

## 样例 #1

### 样例输入 #1

```
10 
2 1 
3 2 
4 1 
5 2 
6 4 
7 5 
8 6 
9 7 
10 9 


5 4 
2
10 4 

5 2 
2
6 1 

6 1
```

### 样例输出 #1

```
3 3 3 
6 6 6 
1 1 1 
2 2 2 
2 2 2
```

## 提示

对于 $100\%$ 的数据,$1\le n\le 10^6,1\le q\le 5\times 10^4,\sum k\le 2\times n$。

每个测试点的具体限制见下表:

#include "bits/stdc++.h"

using namespace std;
inline int read() {
    int x = 0;
    bool f = 1;
    char c = getchar();
    for (; !isdigit(c); c = getchar()) if (c == '-') f = 0;
    for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
    if (f) return x;
    return 0 - x;
}
#define SZ(x) ((int)x.size())
#define ll long long

const int maxn = 1000000 + 10;
const ll inf = 1e18;
struct edge {
    int u, v, nxt;
} ed[maxn << 1];
int head[maxn << 1], cnt;
void add_e(int u, int v) {
    ed[++cnt] = edge{u, v, head[u]};
    head[u] = cnt;
}
int dep[maxn], fa[maxn][22], lg[maxn], dfn[maxn], id;
void dfs(int u, int f) {
    fa[u][0] = f, dfn[u] = ++id;
    dep[u] = dep[f] + 1;
    for (int i = 1; i <= lg[dep[u]]; i++)
        fa[u][i] = fa[fa[u][i - 1]][i - 1];
    for (int i = head[u]; i; i = ed[i].nxt)
        if (ed[i].v != f)
            dfs(ed[i].v, u);
}
int LCA(int x, int y) {
    if (dep[x] < dep[y]) swap(x, y);
    while (dep[x] > dep[y])
        x = fa[x][lg[dep[x] - dep[y]] - 1];
    if (x == y) return x;
    for (int k = lg[dep[x]] - 1; k >= 0; k--)
        if (fa[x][k] != fa[y][k])
            x = fa[x][k], y = fa[y][k];
    return fa[x][0];
}

vector<int> g[maxn];
int sta[maxn], top = 0;
bool cmp(int x, int y) { return dfn[x] < dfn[y]; }
int n, m, k, a[maxn], vis[maxn];
void modify(int x) {
    if (top == 1) {
        sta[++top] = x;
        return;
    }
    int lca = LCA(x, sta[top]);
    if (lca == sta[top]) {
        sta[++top] = x;
        return;
    }
    while (top > 1 && dfn[sta[top - 1]] >= dfn[lca])
        g[sta[top - 1]].push_back(sta[top]), top--;
    if (lca != sta[top]) g[lca].push_back(sta[top]), sta[top] = lca;
    sta[++top] = x;
}
ll dp[maxn], mn[maxn], mx[maxn], sz[maxn];
ll ans, vmax, vmin;
void solve(int u) {
    dp[u] = 0;
    sz[u] = vis[u];
    if (vis[u]) mn[u] = mx[u] = 0;
    else mn[u] = inf, mx[u] = -inf;
    for (int v:g[u]) {
        solve(v);
        ll dis = dep[v] - dep[u];
        ans += (dp[u] + sz[u] * dis) * sz[v] + dp[v] * sz[u];
        sz[u] += sz[v];
        dp[u] += dp[v] + sz[v] * dis;
        vmax = max(vmax, mx[u] + mx[v] + dis);
        vmin = min(vmin, mn[u] + mn[v] + dis);
        mx[u] = max(mx[u], mx[v] + dis);
        mn[u] = min(mn[u], mn[v] + dis);
    }
    g[u].clear();
}


int main() {
    n = read();
    for (int i = 1; i <= n; i++)
        lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
    for (int i = 1, u, v; i < n; i++) {
        u = read(), v = read();
        add_e(u, v);
        add_e(v, u);
    }
    dfs(1, 0);
    m = read();
    while (m--) {
        k = read();

        for (int i = 1; i <= k; i++) {
            a[i] = read();
            vis[a[i]] = 1;
        }
        if (k == 1) {
            printf("0 0 0\n");
        } else {
            sort(a + 1, a + k + 1, cmp);
            sta[top = 1] = 1;
            for (int i = 1; i <= k; i++) {
                if (a[i] != 1) modify(a[i]);
            }
            while (top > 1) g[sta[top - 1]].push_back(sta[top]), top--;
            ans = 0;
            vmax = -inf;
            vmin = inf;
            solve(1);
            printf("%lld %lld %lld\n", ans, vmin, vmax);
        }
        for (int i = 1; i <= k; i++) vis[a[i]] = 0;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

内测人员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值