# [HEOI2014] 大工程
## 题目描述
国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。
我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。
在 $2$ 个国家 $a,b$ 之间建一条新通道需要的代价为树上 $a,b$ 的最短路径的长度。
现在国家有很多个计划,每个计划都是这样,我们选中了 $k$ 个点,然后在它们两两之间 新建 $\dbinom{k}{2}$ 条新通道。
现在对于每个计划,我们想知道:
1. 这些新通道的代价和。
2. 这些新通道中代价最小的是多少。
3. 这些新通道中代价最大的是多少。
## 输入格式
第一行 $n$ 表示点数。
接下来 $n-1$ 行,每行两个数 $a,b$ 表示 $a$ 和 $b$ 之间有一条边。点从 $1$ 开始标号。
接下来一行 $q$ 表示计划数。对每个计划有 $2$ 行,第一行 $k$ 表示这个计划选中了几个点。
第二行用空格隔开的 $k$ 个互不相同的数表示选了哪 $k$ 个点。
## 输出格式
输出 $q$ 行,每行三个数分别表示代价和,最小代价,最大代价。
## 样例 #1
### 样例输入 #1
```
10
2 1
3 2
4 1
5 2
6 4
7 5
8 6
9 7
10 9
5
2
5 4
2
10 4
2
5 2
2
6 1
2
6 1
```
### 样例输出 #1
```
3 3 3
6 6 6
1 1 1
2 2 2
2 2 2
```
## 提示
对于 $100\%$ 的数据,$1\le n\le 10^6,1\le q\le 5\times 10^4,\sum k\le 2\times n$。
每个测试点的具体限制见下表:
#include "bits/stdc++.h"
using namespace std;
inline int read() {
int x = 0;
bool f = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = 0;
for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
if (f) return x;
return 0 - x;
}
#define SZ(x) ((int)x.size())
#define ll long long
const int maxn = 1000000 + 10;
const ll inf = 1e18;
struct edge {
int u, v, nxt;
} ed[maxn << 1];
int head[maxn << 1], cnt;
void add_e(int u, int v) {
ed[++cnt] = edge{u, v, head[u]};
head[u] = cnt;
}
int dep[maxn], fa[maxn][22], lg[maxn], dfn[maxn], id;
void dfs(int u, int f) {
fa[u][0] = f, dfn[u] = ++id;
dep[u] = dep[f] + 1;
for (int i = 1; i <= lg[dep[u]]; i++)
fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (int i = head[u]; i; i = ed[i].nxt)
if (ed[i].v != f)
dfs(ed[i].v, u);
}
int LCA(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
while (dep[x] > dep[y])
x = fa[x][lg[dep[x] - dep[y]] - 1];
if (x == y) return x;
for (int k = lg[dep[x]] - 1; k >= 0; k--)
if (fa[x][k] != fa[y][k])
x = fa[x][k], y = fa[y][k];
return fa[x][0];
}
vector<int> g[maxn];
int sta[maxn], top = 0;
bool cmp(int x, int y) { return dfn[x] < dfn[y]; }
int n, m, k, a[maxn], vis[maxn];
void modify(int x) {
if (top == 1) {
sta[++top] = x;
return;
}
int lca = LCA(x, sta[top]);
if (lca == sta[top]) {
sta[++top] = x;
return;
}
while (top > 1 && dfn[sta[top - 1]] >= dfn[lca])
g[sta[top - 1]].push_back(sta[top]), top--;
if (lca != sta[top]) g[lca].push_back(sta[top]), sta[top] = lca;
sta[++top] = x;
}
ll dp[maxn], mn[maxn], mx[maxn], sz[maxn];
ll ans, vmax, vmin;
void solve(int u) {
dp[u] = 0;
sz[u] = vis[u];
if (vis[u]) mn[u] = mx[u] = 0;
else mn[u] = inf, mx[u] = -inf;
for (int v:g[u]) {
solve(v);
ll dis = dep[v] - dep[u];
ans += (dp[u] + sz[u] * dis) * sz[v] + dp[v] * sz[u];
sz[u] += sz[v];
dp[u] += dp[v] + sz[v] * dis;
vmax = max(vmax, mx[u] + mx[v] + dis);
vmin = min(vmin, mn[u] + mn[v] + dis);
mx[u] = max(mx[u], mx[v] + dis);
mn[u] = min(mn[u], mn[v] + dis);
}
g[u].clear();
}
int main() {
n = read();
for (int i = 1; i <= n; i++)
lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
for (int i = 1, u, v; i < n; i++) {
u = read(), v = read();
add_e(u, v);
add_e(v, u);
}
dfs(1, 0);
m = read();
while (m--) {
k = read();
for (int i = 1; i <= k; i++) {
a[i] = read();
vis[a[i]] = 1;
}
if (k == 1) {
printf("0 0 0\n");
} else {
sort(a + 1, a + k + 1, cmp);
sta[top = 1] = 1;
for (int i = 1; i <= k; i++) {
if (a[i] != 1) modify(a[i]);
}
while (top > 1) g[sta[top - 1]].push_back(sta[top]), top--;
ans = 0;
vmax = -inf;
vmin = inf;
solve(1);
printf("%lld %lld %lld\n", ans, vmin, vmax);
}
for (int i = 1; i <= k; i++) vis[a[i]] = 0;
}
return 0;
}