【无标题】tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:Detected

E:\机器学习\1.py:67: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators.
  model.fit_generator(train_generator,epochs=10 ,validation_data=validation_generator)
Epoch 1/10
Traceback (most recent call last):
  File "E:\机器学习\1.py", line 67, in <module>
    model.fit_generator(train_generator,epochs=10 ,validation_data=validation_generator)
  File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 2604, in fit_generator
    return self.fit(
  File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler
    raise e.with_traceback(filtered_tb) from None
  File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\python\eager\execute.py", line 52, in quick_execute
    tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:

Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):
    File "E:\机器学习\1.py", line 67, in <module>
      model.fit_generator(train_generator,epochs=10 ,validation_data=validation_generator)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 2604, in fit_generator
      return self.fit(
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler
      return fn(*args, **kwargs)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1650, in fit
      tmp_logs = self.train_function(iterator)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1249, in train_function
      return step_function(self, iterator)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1233, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1222, in run_step
      outputs = model.train_step(data)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1024, in train_step
      loss = self.compute_loss(x, y, y_pred, sample_weight)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1082, in compute_loss
      return self.compiled_loss(
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__
      loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 152, in __call__
      losses = call_fn(y_true, y_pred)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 284, in call
      return ag_fn(y_true, y_pred, **self._fn_kwargs)
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 2004, in categorical_crossentropy
      return backend.categorical_crossentropy(
    File "C:\Users\Administrator\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\backend.py", line 5538, in categorical_crossentropy
      return tf.nn.softmax_cross_entropy_with_logits(
Node: 'categorical_crossentropy/softmax_cross_entropy_with_logits'
logits and labels must be broadcastable: logits_size=[10,17] labels_size=[10,43]
     [[{{node categorical_crossentropy/softmax_cross_entropy_with_logits}}]] [Op:__inference_train_function_13694]
2023-10-19 10:24:13.506790: W tensorflow/core/kernels/data/generator_dataset_op.cc:108] Error occurred when finalizing GeneratorDataset iterator: FAILED_PRECONDITION: Python interpreter state is not initialized. The process may be terminated.
     [[{{node PyFunc}}]]
 

tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:

Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):

我想知道这个改怎么改啊?求求了

2025-03-19 10:18:51.988420: W tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: INVALID_ARGUMENT: Incompatible shapes: [16,4,1937,1937] vs. [16,16,1937,1937] [[{{function_node __inference_one_step_on_data_7270}}{{node gradient_tape/functional_1_1/multi_head_attention_1/softmax_1/add/BroadcastGradientArgs}}]] Traceback (most recent call last): File "c:\Users\86158\Desktop\3\5.LSTM.py", line 162, in <module> history = model.fit( ^^^^^^^^^^ File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\utils\traceback_utils.py", line 123, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\tensorflow\python\eager\execute.py", line 53, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error: Detected at node gradient_tape/functional_1_1/multi_head_attention_1/softmax_1/add/BroadcastGradientArgs defined at (most recent call last): File "c:\Users\86158\Desktop\3\5.LSTM.py", line 162, in <module> File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\utils\traceback_utils.py", line 118, in error_handler File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 323, in fit File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 117, in one_step_on_iterator File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\src\backend\tensorflow\trainer.py", line 105, in one_step_on_data File "C:\Users\86158\AppData\Local\Programs\Python\Python312\Lib\site-packages\keras\
最新发布
03-20
Epoch 1/10 2023-07-22 21:56:00.836220: W tensorflow/core/framework/op_kernel.cc:1807] OP_REQUIRES failed at cast_op.cc:121 : UNIMPLEMENTED: Cast string to int64 is not supported Traceback (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\AI\env\lib\site-packages\tensorflow\python\eager\execute.py", line 52, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.UnimplementedError: Graph execution error: Detected at node 'sparse_categorical_crossentropy/Cast' defined at (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1685, in fit tmp_logs = self.train_function(iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1284, in train_function return step_function(self, iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1268, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1249, in run_step outputs = model.train_step(data) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1051, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1109, in compute_loss return self.compiled_loss( File "D:\AI\env\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "D:\AI\env\lib\site-packages\keras\losses.py", line 142, in __call__ losses = call_fn(y_true, y_pred) File "D:\AI\env\lib\site-packages\keras\losses.py", line 268, in call return ag_fn(y_true, y_pred, **self._fn_kwargs) File "D:\AI\env\lib\site-packages\keras\losses.py", line 2078, in sparse_categorical_crossentropy return backend.sparse_categorical_crossentropy( File "D:\AI\env\lib\site-packages\keras\backend.py", line 5610, in sparse_categorical_crossentropy target = cast(target, "int64") File "D:\AI\env\lib\site-packages\keras\backend.py", line 2304, in cast return tf.cast(x, dtype) Node: 'sparse_categorical_crossentropy/Cast' Cast string to int64 is not supported [[{{node sparse_categorical_crossentropy/Cast}}]] [Op:__inference_train_function_1010]
07-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值