Ascend C算子性能优化实用技巧03——搬运优化

Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。

目前已经有越来越多的开发者使用Ascend C,我们将通过几期“Ascend C算子性能优化”专题分享,围绕开发者最为关心的算子性能优化环节,介绍Ascend C算子常用的优化技巧,帮助开发者自主构建出更优性能的算子。专题内容将围绕流水优化、搬运优化、内存优化、API使用优化以及Tiling优化等优化技巧,从方案讲解、优化案例、性能对比等多角度展开介绍。前期内容回顾:

《Ascend C算子性能优化实用技巧01——流水优化》
《Ascend C算子性能优化实用技巧02——内存优化》

下面进入第三期内容:Ascend C搬运优化,您将了解到以下优化技巧:

  1. 尽量一次搬运较大的数据块
  2. GM地址尽量512B对齐
  3. 高效使用搬运API

尽量一次搬运较大的数据块

搬运不同大小的数据块时,对带宽的利用率(有效带宽/理论带宽)不一样。根据实测经验,单次搬运数据长度16KB以上时,通常能较好地发挥出带宽的最佳性能。因此对于单次搬运,应考虑尽可能的搬运较大的数据块。下图展示了某款AI处理器上实测的不同搬运数据量下带宽的变化图。

测试数据与处理器型号相关,且实际测试时可能会存在略微抖动,具体带宽数值并不一定和下文的测试数据严格一致。

图1 UB->GM方向不同搬运数据量下实际占用带宽的变化

图2 GM->UB方向不同搬运数据量下实际占用带宽的变化

GM地址尽量512B对齐

由于AI处理器内部设计约束,从GM向Local Memory搬运数据时,保证GM地址512B对齐可以最高效的发挥出带宽的效率。如下图示例,展示了在512B对齐以及32B对齐情况下单核的带宽效率:搬运同等数据量,带宽差距最大的情况,32B对齐场景只能达到512B对齐场景的70%。

本性能优化手段仅针对Atlas A2训练系列产品/Atlas 800I A2推理产品生效。

测试数据与处理器型号相关,且实际测试时可能会存在略微抖动,具体带宽数值并不一定和下文的测试数据严格一致。

图3 GM->UB方向512B对齐和32B对齐实测带宽的差异对比

​​​​​​​图4 UB->GM方向512B对齐和32B对齐实测带宽的差异对比

高效使用搬运API

使用搬运API时,应该尽可能地使用API的srcStride/dstStride/blockLen/blockCount等参数实现连续搬运或者固定间隔搬运,而不是使用for循环,二者效率差距极大。如下图示例,图片的每一行为16KB,需要从每一行中搬运前2KB,针对这种场景,使用srcStride/dstStride/blockLen/blockCount等参数可以达到一次搬完的效果,每次搬运32KB;如果使用for循环遍历每行,每次仅能搬运2KB。参考“尽量一次搬运较大的数据块”章节介绍的搬运数据量和实际带宽的关系,建议通过DataCopy包含srcStride/dstStride/blockLen/blockCount的接口一次搬完。

​​​​​​​图5 待搬运数据排布

【反例】

// 搬运数据存在间隔,从GM上每行16KB中搬运2KB数据, 共16行
LocalTensor<float> tensorIn;
GlobalTensor<float> tensorGM;
...
constexpr int32_t copyWidth = 2 * 1024 / sizeof(float);
constexpr int32_t imgWidth = 16 * 1024 / sizeof(float);
constexpr int32_t imgHeight = 16;
// 使用for循环,每次只能搬运2K,重复16次
for (int i = 0, i < imgHeight; i++) {
    DataCopy(tensorIn[i * copyWidth ], tensorGM[i*imgWidth], copyWidth);
}

【正例】

LocalTensor<float> tensorIn;
GlobalTensor<float> tensorGM;
...
constexpr int32_t copyWidth = 2 * 1024 / sizeof(float);
constexpr int32_t imgWidth = 16 * 1024 / sizeof(float);
constexpr int32_t imgHeight = 16;
// 通过DataCopy包含srcStride/dstStride/blockLen/blockCount的接口一次搬完
DataCopyParams copyParams;
copyParams.blockCount = imgHeight;
copyParams.blockLen = copyWidth / 8;   // 搬运的单位为DataBlock(32Byte),每个DataBlock内有8个float
copyParams.srcStride = (imgWidth  - copyWidth ) / 8;   // 表示两次搬运src之间的间隔,单位为DataBlock
copyParams.dstStride = 0;                              // 连续写,两次搬运之间dst的间隔为0,单位为DataBlock
DataCopy(tensorGM, tensorIn, copyParams);

更多学习资源

了解更多Ascend C算子性能优化手段和实践案例,请访问:昇腾社区Ascend C信息专区

  • 9
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值