利用ENVI进行土地利用监督分类

本文详细描述了如何使用ENVI软件进行土地利用分类,包括数据预处理、训练样本选择、最大似然分类方法、精度评定以及后处理步骤。实验结果显示最大似然分类精度达到97.94%,并探讨了分类精度的优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


前言

本次实验土地利用分类为例,分类仅考虑大面积连续分布的地物,不考虑更加详细的亚类,选择Landsat8OLI图像为数据源,谷歌地球遥感影像数据为参考影像。监督分类主要包括特征提取和选择、确定分类类别和建立解译标志、训练样本选取和评价、图像分类四个部分。


提示:以下是本篇文章正文内容,下面案例可供参考

一、实验目的

利用ENVI软件开展基于最大似然法的遥感图像土地覆盖分类。

二、实验步骤

1.数据预处理

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值