《平面分割》

该文讨论了一个数学问题,即n条直线(最多500条)在平面内最多能将空间分割成多少区域,其中p条直线相交于一点。给出了一种简洁的解决方案,通过一个数学公式计算出最大区域数。示例输入125条直线,其中5条相交,输出结果为73个区域。提供的C++代码实现了这个计算过程。
摘要由CSDN通过智能技术生成

在同一平面内有 n(n ≤ 500)条直线,其中 p(p ≥ 2)条直线相交于同一点,问这 n 条直线最多能将平面分割成多少个不同的区域?

输入两个整数 n(n ≤ 500)和 p(2 ≤ p ≤ n)。

输出一个正整数,表最多分割成的区域数。

输入样例         12 5

输出样例         73

这道题的解决方案多种多样,但这种是最简单的,以下式子可根据数学规律得出,请自行探究。

代码:

#include <bits/stdc++.h>
using namespace std;

int main(){
      int n, p;
      cin >> n >> p;
      cout << (n * n + n + 3 * p - p * p) / 2;
      return 0;
}

//**************************************************************************************************//

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值