【上进小菜猪】深入了解Hadoop:HDFS、MapReduce和Hive

本文深入探讨了Hadoop在大数据处理中的应用,包括Hadoop的安装配置、使用Java编写MapReduce作业以及Hive进行数据分析。通过示例展示了如何配置Hadoop环境,运行MapReduce作业,并利用Hive进行SQL-like查询,以应对大数据时代的挑战。
摘要由CSDN通过智能技术生成

📬📬我是上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。

在当今的大数据时代,数据的处理和分析已经成为企业发展的必要条件之一。Hadoop作为一种开源的大数据处理框架,已经成为后端大数据处理的重要工具之一。本文将介绍如何在后端使用Hadoop进行大数据处理,包括Hadoop的安装和配置以及如何使用Java编写MapReduce作业。

Hadoop的安装和配置

Hadoop可以在Linux、Windows、Mac OS X等操作系统上运行。在安装Hadoop之前,需要确保系统中已安装了Java。可以通过以下命令检查Java是否已安装:

Copy code
java -version

如果还没有安装Java,请先下载和安装Java Development Kit(JDK)。

接下来,可以下载Hadoop的最新版本并解压缩到本地文件系统中。可以从Hadoop官方网站上下载最新版本的Hadoop。在解压缩之前,需要确保的系统中已安装了gzip或tar等压缩解压工具。

解压缩完成后,需要进行一些必要的配置,包括以下内容:

配置环境变量

在.bashrc或.bash_profile文件中添加以下行:

export HADOOP_HOME=/path/to/hadoop
export PATH=$PATH:$HADOOP_HOME/bin

这将使系统能够找到Hadoop二进制文件的位置。

配置Hadoop集群

在使用Hadoop之前,需要配置Hadoop集群。需要在Hadoop的配置文件中指定Hadoop集群的配置。Hadoop的配置文件通常位于Hadoop安装目录的conf文件夹中。下面是一些常见的配置文件:

core-site.xml:Hadoop的核心配置文件,包括Hadoop的默认文件系统和Hadoop的I/O设置。
hdfs-site.xml:Hadoop分布式文件系统(HDFS)的配置文件,包括HDFS的块大小和副本数。
mapred-site.xml:MapReduce框架的配置文件,包括MapReduce的任务跟踪器和数据节点。
在进行配置之前,需要先将默认配置文件复制到新文件夹中,并在新文件夹中进行修改。例如,可以使用以下命令复制默认配置文件:

cp $HADOOP_HOME/etc/hadoop/* /path/to/hadoop/conf/

然后,可以使用文本编辑器打开相应的配置文件并进行修改。下面是一些常见的配置属性:

fs.defaultFS:默认文件系统的URL,可以是本地文件系统或HDFS。
dfs.replication:HDFS块的副本数,默认为3。
mapreduce.framework.name:MapReduce框架的实现,可以是本地、YARN或Mesos。
mapreduce.jobtracker.address:MapReduce作业跟踪器的地址,可以是本地或YARN。

yarn.resourcemanager.hostname:YARN资源管理器的主机名。
完成配置后,可以使用以下命令启动Hadoop:

Copy code
start-all.sh

这将启动HDFS和MapReduce服务。可以使用以下命令检查Hadoop服务是否已成功启动:

jps

这将列出正在运行的Java进程,其中应包括Hadoop的各个服务。

使用Java编写MapReduce作业

MapReduce是Hadoop的核心编程模型,用于并行处理大规模数据集。MapReduce作业通常由两个函数组成:Map函数和Reduce函数。Map函数将输入数据分割成一系列键值对,并将每个键值对发送到Reduce函数进行处理。Reduce函数将所有具有相同键的值组合在一起,并将它们处理为单个输出值。

以下是一个简单的Java代码示例,用于计算输入文本文件中每个单词的出现次数:

public class WordCount {
   
  public static class Map extends Mapper<LongWritable
基于hadoopHive数据仓库JavaAPI简单调用的实例,关于Hive的简介在此不赘述。hive提供了三种用户接口:CLI,JDBC/ODBC和 WebUI CLI,即Shell命令行 JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似 WebGUI是通过浏览器访问 Hive 本文主要介绍的就是第二种用户接口,直接进入正题。 1、Hive 安装: 1)hive的安装请参考网上的相关文章,测试时只在hadoop一个节点上安装hive即可。 2)测试数据data文件'\t'分隔: 1 zhangsan 2 lisi 3 wangwu 3)将测试数据data上传到linux目录下,我放置在:/home/hadoop01/data 2、在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口。使用下面命令进行开启: Java代码 收藏代码 hive --service hiveserver >/dev/null 2>/dev/null & 我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。   Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下: 1 [wyp@localhost/home/q/hive-0.11.0]$ bin/hive --service hiveserver -p10002 2 Starting Hive Thrift Server 上面代表你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值