深入探究HDFS:高可靠、高可扩展、高吞吐量的分布式文件系统【上进小菜猪大数据系列】

本文详细介绍了HDFS的概念、架构、数据读写流程,揭示其在大数据领域的应用与优势。HDFS是Apache Hadoop的核心模块,提供高可靠性和高可用性,适合大规模数据处理。文章通过代码实例展示了文件的写入和读取操作,并讨论了HDFS的适用场景和局限性。
摘要由CSDN通过智能技术生成

上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。

引言

在这里插入图片描述

在当今数据时代,数据的存储和处理已经成为了各行各业的一个关键问题。尤其是在大数据领域,海量数据的存储和处理已经成为了一个不可避免的问题。为了应对这个问题,分布式文件系统应运而生。Hadoop分布式文件系统(Hadoop Distributed File System,简称HDFS)就是其中一个开源的分布式文件系统。本文将介绍HDFS的概念、架构、数据读写流程,并给出相关代码实例。

一、HDFS的概念

HDFS是Apache Hadoop的一个核心模块,是一个开源的分布式文件系统,它可以在集群中存储和管理大型数据集。HDFS被设计用来运行在廉价的硬件上,它提供了高可靠性和高可用性,能够自动处理故障,具有自我修复的能力。

HDFS的核心理念是将大型数据集划分成小的块(通常是128 MB),并在集群中的多个节点之间进行分布式存储。每个块都会被复制到多个节点上,以提高数据的可靠性和可用性。HDFS还提供了高效的数据读写接口,可以支持各种不同类型的应用程序对数据的读写操作。

二、HDFS的架构

HDFS的架构包括NameNode、DataNode和客户端三个组件。

1.NameNode

NameNode是HDFS的核心组件,它是集群中的中心节点,用于管理文件系统的命名空间和客户端访问文件的元数据。NameNode维护了整个文件系统的命名空间和文件的层次结构,它还维护了每个文件的块列表、块所在的DataNode列表以及每个块的副本数量。当客户端请求访问文件时,它首先向NameNode发送请求,NameNode根据元数据信息返回给客户端请求的数据块的位置信息。

2.DataNode

DataNode是HDFS的工作节点,它负责存储实际的数据块,并提供数据读写服务。当客户端需要读取或写入数据块时,它会与DataNode通信,DataNode返回请求的数据块,并执行相应的读写操作。

3.客户端

客户端是使用HDFS的应用程序,它通过HDFS提供的API来访问HDFS中存储的数据。客户端向NameNode发送文件系统的元数据请求,并与DataNode进行数据交互。HDFS提供了Java和其他编程语言的API,使得开发者可以方便地使用HDFS的功能。

三、HDFS的数据读写流程

HDFS的数据读写流程包括文件写入和文件读取两个过程

1.文件写入

在HDFS中,文件的写入过程可以分为以下几个步骤:

(1)客户端向NameNode发送文件写入请求。

(2)NameNode检查请求的文件是否存在,如果不存在,则创建新的文件,并返回文件的元数据信息给客户端。如果文件已经存在,则返回文件的元数据信息给客户端。

(3)客户端根据元数据信息将文件分割成一个个数据块,并将每个数据块复制到多个DataNode上。

(4)客户端向NameNode发送数据块信息,包括块的编号和块所在的DataNode列表。

(5)NameNode将块的信息存储在内存中,并返回给客户端写入成功的信息。

(6)客户端开始向DataNode写入数据块,如果一个DataNode写入失败,则重新选择另一个DataNode进行数据复制。

(7)当所有数据块都写入完成后,客户端向NameNode发送完成写入请求,NameNode更新文件的元数据信息,并返回写入完成的信息给客户端。

2.文件读取

在HDFS中,文件的读取过程可以分为以下几个步骤:

(1)客户端向NameNode发送文件读取请求。

(2)NameNode根据文件的元数据信息,返回数据块的位置信息。

(3)客户端根据块的位置信息,向DataNode请求读取数据块。

(4)DataNode返回数据块的内容给客户端。

(5)如果需要读取多个数据块,则客户端继续向相应的DataNode请求读取数据块。

3.HDFS的优势

HDFS具有以下优势:

(1)可靠性:HDFS采用了数据复制机制,每个数据块都会复制到多个DataNode上,即使某个DataNode出现故障,也不会影响文件的完整性和可用性。

(2)高可扩展性:HDFS的设计理念就是高可扩展性,通过添加更多的DataNode,可以轻松地扩展文件系统的容量和性能。

(3)高吞吐量:HDFS的设计目标是针对大数据量的处理,因此具有高吞吐量

第1章 HDFS HA及解决方案 1.1 HDFS系统架构 1.2 HA定义 1.3 HDFS HA原因分析及应对措施 1.3.1 可靠性 1.3.2 可维护性 1.4 现有HDFS HA解决方案 1.4.1 Hadoop的元数据备份方案 1.4.2 Hadoop的SecondaryNameNode方案 1.4.3 Hadoop的Checkpoint ode方案 1.4.4 Hadoop的BackupNode方案 1.4.5 DRDB方案 1.4.6 FaceBook的AvatarNode方案 1.5 方案优缺点比较 第2章 HDFS元数据解析 2.1 概述 2.2 内存元数据结构 2.2.1 INode 2.2.2 Block 2.2.3 BlockInfo和DatanodeDescriptor 2.2.4 小结 2.2.5 代码分析——元数据结构 2.3 磁盘元数据文件 2.4 Format情景分析 2.5 元数据应用场景分析 第3章 Hadoop的元数据备份方案 3.1 运行机制分析 4 3.1.1 NameNode启动加载元数据情景分析 3.1.2 元数据更新及日志写入情景分析 3.1.3 Checkpoint过程情景分析 3.1.4 元数据可靠性机制 3.1.5 元数据一致性机制 3.2 使用说明 第4章 Hadoop的Backup Node方案 4.1 Backup Node概述 4.1.1 系统架构 4.1.2 使用原则 4.1.3 优缺点 4.2 运行机制分析 4.2.1 启动流程 4.2.2 元数据操作情景分析 4.2.3 日志池(journal spool)机制 4.2.4 故障切换机制 4.3 实验方案说明 4.4 构建实验环境 4.4.1 网络拓扑 4.4.2 系统安装及配置 4.4.3 安装JDK 4.4.4 虚拟机集群架设 4.4.5 NameNode安装及配置 4.4.6 Backup Node安装及配置 4.4.7 Data Node安装及配置 4.4.8 Clients安装及配置 4.5 异常解决方案 4.5.1 异常情况分析 4.5.2 NameNode配置 4.5.3 Backup Node配置 4.5.4 Data Node配置 4.5.5 NameNode宕机切换实验 4.5.6 NameNode宕机读写测试 第5章 AvatarNode运行机制 5.1 方案说明 5.1.1 系统架构 5.1.2 思路分析 5.1.3 性能数据 5.2 元数据分析 5.2.1 类FSNamesystem 5.2.2 类FSDirectory 5.2.3 AvatarNode的磁盘元数据文件 5.3 AvatarNode Primary启动过程 5.4 AvatarNode Standby启动过程 5.4.1 AvatarNode的构造方法 5.4.2 Standby线程的run()方法 5.4.3 Ingest线程的run()方法 5.4.4 Ingest线程的ingestFSEdits ()方法 5.4.5 Standby线程的doCheckpoint()方法 5.5 用户操作情景分析 5.5.1 创建目录情景分析 5.5.2 创建文件情景分析 5.6 AvatarNode Standby故障切换过程 5.7 元数据一致性保证机制 5.7.1 元数据目录树信息 5.7.2 Data Node与Block数据块映射信息 5.8 Block更新同步问题 5.8.1 问题描述 5.8.2 结论 5.8.3 源码分析 第6章 AvatarNode使用 6.1 方案说明 6.1.1 网络拓扑 6.1.2 操作系统安装及配置 6.2 使用Avatar打补丁版本 6.2.1 Hadoop源码联机Build 6.2.2 Hadoop源码本地Build 6.2.3 NFS服务器构建 6.2.4 Avatar分发与部署 6.2.5 Primary(namenode0)节点配置 6.2.7 Data Node节点配置 6.2.8 Client节点配置 6.2.9 创建目录 6.2.10 挂载NFS 6.2.11 启动Ucarp 6.2.12 格式化 6.2.13 系统启动 6.2.14 检查 6.2.15 NameNode失效切换写文件实验 6.2.16 NameNode失效切换读文件实验 6.3 Avatar FaceBook版本的使用 6.3.1 Hadoop FaceBook版本安装 6.3.2 节点配置 6.3.3 启动HDFS 6.3.4 NameNode失效切换 第7章 AvatarNode异常解决方案 7.1 测试环境 7.2 Primary失效 7.2.1 解决方案 7.2.2 写操作实验步骤 7.2.3 改进写操作机制 7.2.4 读操作实验步骤 7.2.5 小结 7.3 Standby失效 7.4 NFS失效(数据未损坏) 7.4.1 解决方案 7.4.2 写操作实验步骤 7.4.3 读操作实验步骤 7.4.4 小结 322 7.5 NFS失效(数据已损坏) 7.5.1 解决方案 7.5.2 写操作实验步骤 7.5.3 读操作实验步骤 7.5.4 小结 7.6 Primary先失效,NFS后失效(数据未损坏) 7.6.1 解决方案 7.6.2 写操作实验步骤 7.6.3 读操作实验步骤 7.6.4 小结 7.7 Primary先失效(数据未损坏),NFS后失效(数据损坏) 7.7.1 解决方案 7.7.2 写操作实验步骤 7.7.3 读操作实验步骤 7.7.4 小结 7.8 NFS先失效(数据未损坏),Primary后失效 7.8.1 解决方案 7.8.2 写操作实验步骤 7.8.3 读操作实验步骤 7.8.4 小结 7.9 NFS先失效(数据损坏),Primary后失效(数据损坏) 7.9.1 解决方案 7.9.2 写操作实验步骤 7.9.3 读操作实验步骤 7.9.4 小结 7.10 实验结论 第8章 Cloudera HA NameNode使用 8.1 HA NameNode说明 8.2 CDH4B1版本HDFS集群配置 8.2.1 虚拟机安装 8.2.2 nn1配置 8.2.3 dn1~dn3配置 8.2.4 HDFS集群构建 8.3 HA NameNode配置 8.3.1 nn1配置 8.3.2 其他节点配置 8.4 HA NameNode使用 8.4.1 启动HA HDFS集群 8.4.2 第1次failover 8.4.3 模拟写操作 8.4.4 模拟Active Name Node失效,第2次failover 8.3.5 模拟新的Standby NameNode加入 8.5 小结
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值