时间复杂度


一、什么是数据结构?

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

二、什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

三、算法的时间复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

3.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

3.2 时间复杂度计算

3.2.1 确定运行次数的程序的时间复杂度计算
 // 请计算一下Func1中++count语句总共执行了多少次?
 
#include <stdio.h>

int Count_Digit(const int N, const int D)
{
    int count = 0;
    int num = N;
    if (N == 0)
    {
        return 1;
    }
    else
    {
        for (int num = N; num != 0; num /= 10)
        {
            if (num % 10 == D)
            {
                count++;
            }
        }
        return count;
    }
}

int main()
{

    int N = 0;
    int D = 0;
    scanf("%d %d", &N, &D);
    printf("%d\n", Count_Digit(N, D));

    return 0;
    
}

答案:Func1 执行的准确操作次数 :F(N) = N* N + 2*N + 10;
Func1 执行的大O渐进法为:O(N^2)

// 计算Func2的时间复杂度

#include <stdio.h>

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int M = 10;
	while (M--)
	{
		++count;
	}

	printf("%d\n", count);
}

答案:Func2 执行的准确操作次数 :F(N) = 2*N + M;
Func2 执行的大O渐进法为:O(N)

// 计算Func3的时间复杂度

#include <stdio.h>

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}

	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

答案:Func3 执行的大O渐进法为 :O(N) = M + N;

// 计算Func4的时间复杂度

#include <stdio.h>

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

答案:Func4 执行的准确操作次数 :F(N) = 100;
Func4 执行的大O渐进法为:O(1)

// 计算Func5的时间复杂度

#include <stdio.h>

void Func1(int N)
{

	int count = 0;

	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}

	int M = 10;
	
	while (M--)
	{
		++count;
	}

	printf("%d\n", count);
}

答案:Func5 执行的准确操作次数 :F(N) = N * N + 2* N + M;
Func5 执行的大O渐进法为:O(N^2)

3.2.2 不确定运行次数的程序的时间复杂度计算

有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.2.2.1 BubbleSort的时间复杂度计算
// 计算BubbleSort的时间复杂度

#include <stdio.h>

void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 
 if (exchange == 0)
 break;
 }
}

答案:BubbleSort的时间复杂度:O(N^2)

3.2.2.2 BinarySearch的时间复杂度计算
// 计算BinarySearch的时间复杂度

#include <stdio.h>

int BinarySearch(int* a, int n, int x)
{
	assert(a);

	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else

			return mid;
	}

	return -1;
}

答案:BinarySearch的时间复杂度:O(log2为底N的对数)

3.2.2.3 阶乘递归的时间复杂度计算
// 计算阶乘递归Fac的时间复杂度

#include <stdio.h>

long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

// 计算斐波那契递归Fib的时间复杂度

#include <stdio.h>

long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

3.3 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

3.4 面试题. 消失的数字

数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?

//1.亦或解法
int missingNumber(int* nums, int numsSize){
    int x = 0;
    for(int i = 0;i < numsSize; i++){
        x ^= nums[i];
    }
    for(int i = 0; i < numsSize + 1; i++){
        x ^= i;
    }
    return x;
}
//2.求和作差
int missingNumber(int* nums, int numsSize){
    int x = (1 + numsSize) * numsSize / 2;
    for(size_t i = 0; i < numsSize; i++){
        x -= nums[i];
    }
    return x;
}

在这里插入图片描述

3.5 面试题.轮转数组

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1: 输入: nums =[1,2,3,4,5,6,7], k = 3 输出: [5,6,7,1,2,3,4]
示例 2: 输入:nums = [-1,-100,3,99], k = 2 输出:[3,99,-1,-100]

解法一:

//假设数组个数为1,k为2
//假设数组个数为2,k为2
//假设数组个数为3,k为2

#include <stdio.h>

#define NUMS 1

void reverse(int* nums,int begin,int end)
{
	while (begin < end)
	{
		int tmp = nums[begin];
		nums[begin] = nums[end];
		nums[end] = tmp;

		++begin;
		--end;
	}
}

void retate(int* nums, int numsSize, int k)
{
	if (k > numsSize)
	{
		k %= numsSize;
	}

	reverse(nums,0, numsSize - k - 1);
	reverse(nums, numsSize - k, numsSize -1);
	reverse(nums, 0, numsSize - 1);
}

int main()
{
	int i = 0;
	int nums[NUMS] = { 0 };
	int k = 0;
	scanf("%d", &k);

	for (i = 0; i < NUMS; i++)
	{
		scanf("%d", &nums[i]);
	}
	
	int numsSize = sizeof(nums) / sizeof(nums[0]);
	
	retate(nums, numsSize, k);

	for (i = 0; i < NUMS; i++)
	{
		printf("%d ", nums[i]);
	}

	return 0;
}
//空间复杂度:O(N);时间复杂度O(1)。

解法二:

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define NUMS 4

void retate(int* nums, int numsSize, int k)
{
	if (k > numsSize)
	{
		k %= numsSize;
	}

	int* tmp = (int*)malloc(sizeof(int) * numsSize);
	assert(tmp);
	memcpy(tmp, nums + numsSize - k, sizeof(int) * k);
	memcpy(tmp + k, nums, sizeof(int) * (numsSize - k));
	memcpy(nums, tmp, sizeof(int) * (numsSize));
	free(tmp);
	tmp = NULL;
}

int main()
{
	int i = 0;
	int nums[NUMS] = { 0 };

	for (i = 0; i < NUMS; i++)
	{
		scanf("%d", &nums[i]);
	}

	int numsSize = sizeof(nums) / sizeof(nums[0]);

	int k = 0;
	scanf("%d", &k);

	retate(nums, numsSize, k);

	for (i = 0; i < NUMS; i++)
	{
		printf("%d ", nums[i]);
	}

	return 0;
}

3.6 常见复杂度对比

一般算法常见的复杂度如下:

大O的渐进表示法阶数
O(1)常数阶
O(log(N) )对数阶
O(N)线性阶
O(N*log(N))nlogn阶
O(N^2)平方阶
O(N^3)立方阶
O(2^N)指数阶
在这里插入图片描述

四、算法的空间复杂度

4.1 空间复杂度的概念

空间复杂度是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

4.2 空间复杂度的计算

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}
//第一个变量是整型指针变量a,第二个是整型变量n,第二个是size_t变量end,第二个是整型变量exchange,第二个是整型变量i。

答案:实例1使用了常数个额外空间,所以空间复杂度为 O(1)。

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if (n == 0)
        return NULL;

    long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
    }
    return fibArray;
}

答案:实例2动态开辟了N个空间,空间复杂度为 O(N)。

// 计算阶乘递归Fac的空间复杂度?

long long Fac(size_t N)
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

答案:实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

答案:实例4递归调用了2^N次,共开辟了N个栈帧,空间复杂度为O(N)。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mo_吉托的莫。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值