【工学科普】从画风奇诡到顶尖大师,AI绘画经历了什么?

提及艺术,我们脑海中往往会浮现出达芬奇、梵高、毕加索等巨匠的辉煌身影,他们的杰作无不令人叹为观止。

然而,若我告诉你,如今有一群前所未有的‘艺术家’正悄然崛起,它们无需饮食,无需休眠,却能信手拈来地模仿任何风格,你是否会感到惊讶?这,便是我们今日聚焦的神秘主角——AI绘画。

在揭开其神秘面纱之前,我们预备了一场小测验,旨在挑战你的艺术直觉。

以下是四幅风格迥异的画作,请你尝试辨别它们究竟出自人类之手,还是AI的智慧结晶。如果你已跃跃欲试,那么,这场别开生面的测试即刻启幕

图1:《Théâtre D’opéra Spatial》

图2:《Edmond de Belamy》

图3:《Mecha warrior in the night》

图4:《A Mushroom man》

最后的答案可能会让你感到惊讶,实际上,这四幅绘画全部是由AI完成的!图1中的《太空歌剧院》在美国科罗拉多州博览会的一项艺术比赛中获得了第一名;而图2的《Edmond de Belamy》在佳士得拍卖行的一场拍卖会上以432500美元的价格售出;图3来源于AI绘画社区;而图4则是本文作者自己使用AI绘画创作的微信头像。

不知道你的答案是否符合自己的预期?如果你觉得困难,那说明AI绘画的技术已经达到了一定的水平。通过AI绘画,每一个人都可以创造出属于自己的独一无二的作品。

你可能会好奇,AI是如何学习绘画的?它们又是如何从最初的画风奇诡,发展到现在可以媲美大师的水平呢?接下来,我将带你一起探索AI绘画的发展历程,一起揭开AI绘画的神秘面纱。

那么,让我们开始吧!我们的第一站,就是AI绘画的蹒跚学步阶段。

一、蹒跚学步与理解图像

在AI绘画的早期,我们可以想象成一个小孩子正在学习画画。它的第一步就是理解图像是什么。这就像让孩子画苹果,那他就必须理解什么是苹果一样,他需要知道苹果的形状、颜色,甚至于它在不同光线和角度下的变化。

在AI的世界里,图像是由像素组成的,每个像素包含了颜色的信息。但是AI并不能像人一样直观地理解这些颜色信息代表了什么。不仅如此,同样的物体,可能会有完全不同的展示风格,这就进一步地造成了AI理解图像的困难。例如图5中,这些涂鸦都是猫,但是对于AI来说,它们却完全是不同的物体。

图5:AI会认为,这些怎么会是同一个东西?

AI绘画的第一步让AI理解图像。2012年,谷歌大脑(Google Brain)团队成员Jeff Dean和吴恩达等通过深度学习技术,成功让16000台电脑学习1000万张图片后,在YouTube视频中“认出”了猫。和让孩子认识世界一样,早期的AI也一样面临着很多难题。

图6:被AI认出的猫的图像

这只是一副很简单的图像,但是对AI来说却花费了堪称巨大的开销。伴随着深度学习的发展,AI开始能够理解图像中的内容,其中以AlexNet和卷积神经网络为代表开启了图像识别的新时代,它可以总结图像特征,能够识别图像中的物体,理解图像的结构,比如人、车、猫、狗等。这就是AI绘画的蹒跚学步阶段,和孩子学习绘画一样,是来认识这个世界的。

然而,仅仅理解图像还不够,因为绘画不仅仅是复制现实,更重要的是表达情感和创造新的视觉体验。那么,AI又是如何做到这一点的呢?

二、掌握技巧与风格迁移

在一个孩子开始学习绘画并逐步认识世界之后,他的下一步往往是模仿他所见到的世界。AI绘画也遵循了类似的轨迹。当AI能够识别和再现基本图像后,它的下一步是学会“模仿”艺术家的风格,这便是AI绘画掌握的一个重要技巧——风格迁移。

风格迁移就是捕捉一个风格的视觉特征并将其应用到另一幅画上。就像你可以穿上不同风格的衣服一样,AI可以给图片“换上”不同的风格。这个过程中的一项关键技术叫做生成对抗网络(GAN)。

想象一下,如果AI是一场魔术表演,那么GAN就是其中的双人组合。在这个组合里,一个神经网络(我们称它为生成器)担当魔术师,试图创造出足够迷惑人的“假”画作;而另一个网络(称为鉴别器)则是挑剔的观众,它的任务是分辨出真正的艺术品和AI制造的作品。这两者之间的“对抗”促使生成器不断改进,最终学会创造出让鉴别器也难以区分真假的作品。

图7:魔术师与观众

那么,AI是如何使用GAN进行风格迁移的呢?首先,我们让生成器学习梵高的星空画风,掌握它的色彩模式。接下来,我们给让AI应用它学到的梵高风格。这时,AI会融入梵高的风格特点来重新绘制它。生成器会尝试让这幅新画尽可能接近梵高的原作,而鉴别器则努力识别这幅作品是否保持了原照片的元素,同时又具备了梵高的风格。最终,通过这样的学习和调整,AI能够将梵高的风格转移到任何照片上,创造出全新的艺术作品。

图8:基于某张图片的风格转换后得到的图片

通过掌握GAN和风格迁移技术,AI的绘画能力得到了质的飞跃。它不再仅仅是一个简单的模仿者,而是成为了能够在不同风格之间自由转换的创新者。这一阶段的AI已经可以实现一些出色的效果,例如图9所示的虚拟换衣,以及图像去雾去雨,图像清晰化等功能。

图9:基于GAN实现的虚拟换衣效果

三、文本理解与画面控制

对AI绘画来说,接下来的挑战是如何将文字描述转化为丰富多彩的视觉图像。这个转换过程,不仅考验了AI的理解能力,更是对它创造力的一次大考。让我们深入探索这一阶段,看看AI是如何完成这一壮举的。

在这个阶段,涌现出一项革命性的技术——Diffusion模型。想象你有一张涂满了墨水的纸,现在逐步去除图中的墨水,在这个过程中逐渐揭露出一幅精美的图画。Diffusion模型遵循这样的原理,它从一张随机的“噪声”图片开始,逐步“去噪”,最终转化为具有详细特征的图像。这个过程就像是从一片混沌中创造出有序的美,最终能够根据文本描述生成惊人的艺术作品。

图10:从清晰图像到噪点,从噪点到清晰图像的过程

CLIP模型在理解文本和生成图像间扮演了关键的角色,它像是AI世界中的翻译官,通过大量图像和对应描述的训练,CLIP建立了图片和文字之间的关系。这意味着,当你对AI说“我想要一幅蓝色的大海,海面上有一艘帆船”,CLIP就能帮助AI准确理解这句话的含义,并指导它生成与描述相匹配的图像。

图11:CLIP数据库中的图像与文字标签

而在AI绘画的世界里,一个不可或缺的概念是多模态,这个词描述了AI同时理解和处理多种类型信息(如文本、图像、声音等)的能力,使多模态能够全面地感知这个世界。这种跨界的理解能力极大地增强了AI的创造力和适应性。

图12:以大象为例子的多模态例子

此外,通过精心设计的文本提示(提示词)来引导AI生成更为准确的图像。就好比给AI一个更具体的绘画指令,不仅告诉它“画一只猫”,而是“画一只在阳光下打盹的橘猫”。这样的详细描述能够提高AI生成图像的质量和相关性。

通过这些高级技术的结合使用,AI的绘画不再是简单的模仿或重复,而是变得能够根据人类的需求和创意进行原创性创作。这标志着AI绘画从模仿走向独立创作的重要一步,为未来的艺术探索打开了新的大门。

图13:通过AI绘画实现自己的创意

四、更多关于AI绘画的可能

当我们展望AI绘画的未来,其潜力令人振奋。AI不仅能够模仿现有的艺术风格,还可能创造出我们无法想象的全新风格。想象一下,AI根据个人的喜好,为每个人定制独一无二的艺术作品,这不仅仅是技术上的创新,更是艺术表达方式的一大飞跃。

图14:AI绘画的更多可能

而AI在艺术创作上的能力远不止于此。它能够跨越不同的媒介,不只是静态画作,还能创作音乐、影像,乃至综合媒体作品,为艺术界带来更为丰富的创作形式。同时,AI也将成为教育和创作的辅助工具,帮助人们更深入地理解艺术。

在艺术鉴赏方面,AI凭借其数据处理和学习能力,可以根据用户的偏好推荐艺术作品,使每个人的艺术体验更加个性化和深入。

AI绘画的未来将是一个融合创新、个性化和跨媒介创作的时代。它不仅将为我们呈现前所未有的艺术风格,还将帮助我们以全新的方式理解、创作和欣赏艺术。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值