Python是一种使用广泛的解释型和通用型的高级编程语言。它十分适合刚接触编程的小白去学习,原因不仅在于python是时下最热门的语言之一,还在于其具有简单易上手的特点。不过,想要完全掌握python可不是一件容易事。
马尔科姆·格拉德威尔(Malcolm Gladwell) 在《纽约时报》的畅销书《离群值》中,提出了 “10000小时规则”
的理论。大致意思就是“无论你怎样努力,都至少要花费10000小时投入到学习当中,才能成为某一领域的专家”。
这也意味着你可能需要花费10000小时才能完全掌握python。
第一:不明确自己学习python的原因
“我为什么要学习Python?”
小白一开始去接触python,可能只是因为python热门, 或者很多人都在向自己推荐学习这门语言。如果是因为这样,可能刚过入门阶段,你就会感到很迷茫,进入所谓的 “瓶颈期”。
在初学阶段,大家其实都会出现这样的问题,只是当“瓶颈”来临,有些同学没办法调整自己的状态,半途而废或是状态低迷,导致学习效率不高。事实上,小白在刚接触到python时,一定要明确自己学习它的目的。 是单纯为了赚钱?是找工作?还是兴趣使然?总之,你一定明确自己学习python的原因。这样,你才能不断前行。
第二:不明白用python能做什么
“我将来使用Python能做什么呢?”
你可能对“python能做什么”这个问题毫无头绪。如果是这样的话,那我可以给你介绍一下,学完Python,你可以从事哪些方面的工作。主要包括以下几大方向:
1、web开发
结合python、html、css、javascript、数据库等开发一个网站。
2、网络爬虫
网络爬虫又称网络蜘蛛,是指按照某种规则在网络上爬取所需内容的脚本程序。众所周知,每个网页通常包含其他网页的入口,网络爬虫则通过一个网址依次进入其他网址获取所需内容。在爬虫领域,Python是必不可少的一部分。将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。
3、数据科学
数据科学,包括了机器学习,数据分析和数据可视化。将Python用于机器学习:可以研究人工智能、机器人、语言识别、图像识别、自然语言处理和专家系统等;将Python用于数据分析/可视化:大数据分析等。
4、自动化运维
随着技术的进步、业务需求的快速增长,一个运维人员通常要管理上百、上千台服务器,运维工作也变的重复、繁杂。把运维工作自动化,能够把运维人员从服务器的管理中解放出来,让运维工作变得简单、快速、准确。
5、数据库编程
程序员可通过遵循Python DB-API(应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
6、网络编程
提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet 及BitTorrent. Google都在广泛地使用它。
7、图形处理、数学处理、文本处理
图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。
数学处理:NumPy扩展提供大量与许多标准数学库的接口。
文本处理:python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
8、多媒体应用
Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。
这几个领域,是目前市面上python应用最主流的领域。当你学完Python后,最有可能做的,就是这些领域相关的项目。
当然,无论你要学习Python哪个领域的内容,只要记住一点就好:那就是要明确自己的工作方向。 这样在学习过程中,你的信心会大大提升。之后,当你懂得使用python去创建项目时,你会更加有成就感,更愿意去学习特殊的技巧。
第三:不知道怎么选择最适合自己的学习资料
确实,只要你愿意找,你就可以找到足够多的python学习资源。甚至可以说,网络上python教程、指南和课程多到让你眼花缭乱。这种情况下,即便是资深开发也不一定能选到最适合自己的学习资料,更何况是小白了。初学者本身对于资源的辨识度就不高,这也是为什么我不建议初学者自己去网上找资源的原因了。
我知道有很多的小伙伴都是在学习中不知道自己应该如何更好的学习好编程,所以在这里我给大家安排了非常系统的学习资料教程。
上面这张学习路线图,大家可以保存,一个点一个点的学习掌握,不知道平台有没有压缩,如果看不清的小伙伴可以扫描下方二维码来获取。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
