每当接触到一个新事物的时候,人们的第一个问题就是,这是什么?
什么是人工智能
人工智能就是像人一样会学习、思考和干活的智能机器。
展开来说,人工智能就是一种新的机器,拥有和人一样的智能行为,一些以前只有人才可以做的事情,现在可以由机器来做了。
首先是学习。人类可以学习很多对自己来说未知的知识或者技能,比如:识字、绘画、开车等等。人工智能也可以学习对它来说未知的知识,像人类一样学习识字、绘画、开车等。
其次是思考。人类可以对各种类型的事物做深度思考,比如:下围棋就是一件需要深度思考的活动,人工智能也可以思考如何下围棋,并且比人类更强大。在2016年,人工智能系统 AlphaGo 就战胜了人类围棋的世界冠军。
然后是干活。人类的干活多种多样,比如:写文章、创作音乐、观察在路口闯红灯的车辆等。同样人工智能也可以像人一样写文章、创作音乐、观察在路口闯红灯的车辆等。
人工智能的英语表示是 Artificial Intelligence,使用最广泛的是其英语首字母缩写“AI”,在本文后续的很多地方也会使用 AI 这个缩略语。
既然 AI 是一种智能机器,他到底能做什么呢?我们一起来看看几个具体的人工智能使用场景。
人工智能的几个例子
一、会做家务的机器人
你家里加入了一个新成员,一个会做各种家务活儿的机器人,你给他起了一个名字:小萝卜。
早晨起来之后,你招呼,“小萝卜,去给我准备早餐,我今天要喝一杯热牛奶,一片全麦面包,再加一个煎鸡蛋,我要出去跑步了,半小时后回来吃早餐”。
半小时之后,你回家了,继续招呼:“小萝卜,把早餐端到餐桌来,然后去把我的臭袜子洗了,晾在阳台上”。
这就是一个人工智能机器人 !有一个这样的机器人把家务活儿都做了,是不是有点儿小期待呢!
二、会“看”的机器
我们每个人,一看到这张照片,都知道,这张照片上是一只可爱的小狗。对于人工智能来说,把这张照片给它,这个机器也能“看”出来这张照片上是一个小狗。
在2017年江苏卫视的《最强大脑》节目中,由吴恩达(Andrew Ng)率队的百度机器人“小度”在人脸识别跨年龄识别任务中,以一张童年时期的照片准确的识别出了长大成人之后的一对双胞胎姐妹。这也是人工智能在图像识别场景的例子。
三、停车场缴费
很久以前的停车场,都是人工值守的时候,过程大体上是这样的:
你开车到达停车场入口的时候,自助取一张停车卡(或者是工作人员给你一张停车卡)。当你开车离开停车场的时候,把这张停车卡交给工作人员,然后工作人员告诉你缴费金额,你缴费完成之后,才能够把车开出停车场。
对于识别车辆、计时、缴费,这些工作都需要人来做。
现在的停车场,大多数都已经实现了无人值守。
你开车到达停车场入口的时候,降低速度,或者暂停一下,根本不需要取卡,也没有工作人员,你就可以把车开进停车场了。你开车离开停车场的时候,在出口处有一个显示屏显示出你这次的停车缴费金额,如果这个停车场支持ETC缴费,而你的车正好也安装了ETC设备的话,你都不需要“手动”缴费就可以把车开出停车场了,因为停车费已经通过ETC系统自动缴费了。
对于识别车辆、计时、缴费,这些工作都可以由机器来做了。
这三个场景,以前都只能由人来完成,而现在,有越来越多的需要“智能”能力才能完成的任务,将由 AI 来完成了。从这个角度来说,我们也可以认为,AI 就是一个帮人类干活儿的“工具”。那么这个“工具”与以往的工具有什么不一样呢?
AI 是一种“智能”工具
“人工智能”这种新工具,与以前的工具相比,最重要的区别就是拥有了和人类一样的“智能”。
人类与其他动物最大的区别就是制造和使用工具的能力,这也是人类能够在地球上脱颖而出成为地球主宰的关键原因。人类制造和使用工具的历史可以简单概括为以下几个阶段:
旧石器时代:约250万年前,人类开始使用简单的石制工具,如石斧和石刀;
新石器时代:约1.2万年前,人类开始制作更精细的石器,并发明了农业和陶器;
青铜时代:约5000年前,人类开始使用青铜,标志着金属工具的开始;
铁器时代:约3000年前,铁器的使用使工具更加坚固和耐用;
工业革命:18世纪,机械化生产和蒸汽机的发明极大地提高了工具的制造效率;
计算机技术:20世纪以来,电力、电子和计算机技术的应用使得工具更加智能化和多样化;
人工智能时代:21世纪,技术的发展进一步推动了 AI 工具的创新和应用。
每个阶段都有其独特的技术创新和发展,每个阶段的工具,都比上一个阶段的工具更先进,可以帮助人们解决更复杂的问题,干更复杂的活儿。
铁器时代:由铁制造的农具比青铜农具更坚固,所以人类可以借助铁质农具开垦更多的农田,促进了生产力的大发展。
工业革命时期:新发明的洗衣机可以帮我们洗衣服,使得我们可以从洗衣服这个事情中解放出来。
计算机技术:新发明的计算机可以帮我们计算非常复杂以及海量的计算任务;而互联网这个工具则使得人们传递信息变得无比的便捷与高效。
现在,人类社会开始进入 AI 时代,人们可以制造出“人工智能”这种机器,帮助人类做很多需要“智力”才能完成的工作,比如前面的几个例子。
小结
人工智能就是可以帮助人干活的一种机器,这种机器像人一样会学习、思考和干活儿。就像是给机器装上了一颗人类的“大脑”,让它们可以像人类一样思考和行动,帮助人们做一些智力方面的工作。
由于人工智能拥有和人类一样的学习能力,所以他可以通过不断的学习和训练,让自己变得越来越聪明,从而帮助我们解决更多更复杂的问题,让我们的生活变得更便利。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。