Meta于昨日宣布推出其最新且最强大的开源模型Llama 3.1 405B,此模型拥有4050亿参数,支持长达128K tokens的上下文长度。
该模型在15万亿tokens的数据集上进行训练,是Meta史上首次以如此大规模训练的Llama模型。
Llama 3.1 405B在超过150个基准测试中表现出色,能够与业界顶尖的闭源模型如GPT-4o、Claude 3.5 Sonnet和Gemini Ultra媲美。
Meta的创始人兼CEO马克·扎克伯格强调,Llama 3.1 405B不仅在性能上与闭源模型相当,而且在成本效益和灵活性上更具优势,尤其适合企业微调和训练小型模型。
扎克伯格还预测,Meta AI助手的使用率将在几个月内超过ChatGPT。
随着Llama 3.1 405B的发布,Meta引入了多项新功能,包括AI图片编辑、AI编程支持和VR/AR设备的智能助手。
此外,Llama 3.1 405B和同系列的70B与8B模型均支持128K tokens的上下文窗口,以及多语言和先进的工具使用能力,以促进更高级的应用开发。
Meta的开源生态系统已与超过25个合作伙伴展开合作,包括亚马逊AWS、英伟达、微软Azure、谷歌云等,他们将提供Llama 3.1模型的服务和支持。
Meta还更新了许可证条款,允许开发者首次使用包括405B参数在内的Llama模型输出来改进其他模型。
为了优化模型训练流程,Meta对其训练堆栈进行了全面优化,采用标准解码器Transformer架构,通过迭代的后训练程序提高模型性能,包括监督微调和直接偏好优化。
Meta还通过量化模型从BF16到FP8,降低了计算需求,使得405B模型能在单一服务器节点内运行。
Llama 3.1 405B的发布标志着Meta在其开源模型故事中的新篇章,Meta还计划推出一个综合的Llama系统,包括新的安全工具和API标准,以简化第三方项目的集成。
开发者现在可以利用Llama模型执行实时和批量推理、模型微调、持续预训练等多种任务。
在产品层面,Meta将Llama 3.1 405B集成至旗下多个终端,如WhatsApp和Meta AI聊天机器人,新增了七种语言支持,并推出了创新的图像生成和编辑功能,以及数学和编程辅助工具。
Meta AI还将整合到Quest VR头显的语音命令系统中,提供免提控制和环境感知能力。
扎克伯格在公开信中阐述了开源AI对开发者、Meta以及整个世界的益处,指出开源AI有助于技术的民主化,避免权力集中,确保技术更广泛、更安全地应用。
他相信,开源AI将使Meta保持技术领先,同时也推动Llama模型成为行业标准。
随着Llama 3.1系列的发布,开源与闭源模型的竞争态势变得更加激烈,但最终模型的实际能力和应用场景将决定其市场接受度。
Meta的这一举措无疑为开源AI领域带来了新的活力和可能性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
