以下是一个暑假期间学习AI产品经理的详细路线,分为八个周来进行:
第1周:了解AI产品管理基础
阅读材料:
《人工智能:一种现代的方法》了解AI基础。
《人人都是产品经理》了解产品管理基础。
在线课程:
Coursera上的“人工智能基础”课程。
edX上的“产品管理基础”课程。
实践:
调研市场上现有的AI产品,分析其功能、用户群体和市场定位。
第2周:深入学习AI技术
在线课程:
Udacity的“深度学习纳米学位”基础课程。
fast.ai的“Practical Deep Learning for Coders”课程。
编程练习:
使用Python和TensorFlow/PyTorch完成简单的机器学习项目。
阅读:
阅读AI相关的博客和论文,如ArXiv上的最新研究。
第3周:掌握产品管理技能
在线课程:
Coursera的“数字产品管理:现代基金”课程。
实践:
设计一个简单的AI产品原型,并撰写产品需求文档。
阅读:
阅读关于用户体验(UX)设计的基础书籍。
第4周:数据分析与用户研究
在线课程:
Coursera的“数据科学导论”课程。
工具学习:
学习使用数据分析工具,如Excel、Google Sheets、SQL。
实践:
进行用户访谈,收集用户反馈,并分析数据。
第5周:技术写作与沟通技巧
在线课程:
Coursera的“技术写作”课程。
实践:
撰写技术博客或教程,分享所学知识。
沟通练习:
参加线上或线下研讨会,练习公开演讲和沟通技巧。
第6周:商业战略与市场分析
在线课程:
Coursera的“商业战略”课程。
阅读:
阅读有关商业模式和竞争战略的书籍。
实践:
为你的AI产品制定商业计划。
第7周:法律伦理与合规性
在线课程:
Coursera的“数据隐私与合规性”课程。
阅读:
了解GDPR、CCPA等数据保护法规。
实践:
为AI产品制定隐私政策和用户协议。
第8周:综合实践与项目总结
项目实践:
完成一个AI产品从概念到原型的完整项目。
撰写报告:
撰写项目报告,总结学习成果和经验。
网络建设:
加入AI和产品管理的社群,建立专业网络。
规划未来:
根据学习体验,规划接下来的学习路径和职业发展。
这个路线图是一个高强度的学习计划,需要良好的时间管理和自我驱动力。记得在学习过程中保持适当的休息,并根据自己的进度和兴趣调整学习内容。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
