AI大模型从入门到实战:这才是真正的大模型学习思路

“ 从训练一个小模型开始,大模型太复杂小模型刚刚好 ”

有句老话叫眼高手低,最近发现有些人就是眼高手低的现实案例,在什么都不懂的情况下就想搞大模型,小模型还看不上。

但其实最好的方式是从一个小模型开始,至于原因就是因为小模型相对比较简单一点,其次就是硬件要求较低,普通人能够玩的转。

从小模型开始
为什么建议大家从小模型开始,特别是一些开源小模型?

之所以建议大家刚开始以小模型为主,原因就是因为从技术原理来说,大模型和小模型没有本质上的区别;只不过大模型和小模型由于量变导致的质变,大模型的复杂度与小模型不能同日而语。

而从学习和使用的角度来说,大模型和小模型最大的差距就是对算力的需求;虽然从效果上来说,小模型远不如大模型,但学习和使用小模型能够让我们快速地摸清大模型技术的脉络和主要框架。

最重要的是小模型有很强的实操性,因为其算力成本低,甚至可以在个人电脑上进行部署和运维,而且使用个人电脑也可以对它们进行训练和微调,这样就大大降低了我们的学习难度。

以个人的经历来说,在刚开始学习大模型技术的时候,也是和很多人一样,要学就学技术最牛逼的;但等真的把大模型技术应用到工作之后才发现,原来大模型技术也没有想象中的那么复杂,但也没有想象中的那么简单。

在之前,一直以为训练和微调一个大模型,至少也要几千万条数据;但在工作中使用到的一些小模型,只需要几百,甚至几十条数据就可以完成微调任务,而且效果还不错。

当然,这里并不是说自己有多厉害,而是这些开源模型的作者很厉害;经过它们精心微调过的模型,只需要经过简单的调整就可以适配到相似的业务体系中。

而如果继续用大模型的思路,去训练和微调一个大模型,说句实话有几个企业能够支撑的了你的需求?

在这里插入图片描述

不说大模型数据训练和微调所需要的资金,算力等问题,就大模型训练所需要的训练和微调数据的收集,就已经是一个很大的工程量了。

不知道大家有没有在抖音上看到过一个用四个月时间训练模型打蚊子的哥们,虽然并不知道他训练模型用了多大的数据量,但从他手动标注数据的情况下,他的数据量应该不是很大,而且他的操作好像都是在个人主机上完成的。

所以,训练和微调一个大模型很难,而且因为算力和资金的限制导致很多人无法进行真正的实操大模型;因此小模型是一个不错的选择,可以根据自己的喜好和需求,训练一个能够满足我们日常工作和生活的小模型其实也是一个挺不错的选择。

最重要的是只要我们发挥想象力,那它真的很好玩。

最近,因为工作原因导致比较忙,等后续有空闲时间,也准备自己训练和微调一个小模型来完成自己的喜好。到时候会全程分享需求,模型选择和训练的过程。

最重要的是,大模型技术的理论看了一大堆,可能很多地方依然不明不白,或者就是觉得自己都看懂了,实际上却什么都不懂;这时通过自己训练和微调模型,就能加深自己对大模型技术的体会与理解。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值