在这个人工智能(AI)技术飞速发展的时代,AI产品经理已成为推动产业变革的中坚力量。他们不仅要具备传统产品经理的敏锐洞察力,还需深入掌握AI技术的精髓,以确保AI技术在产品中的有效融合与创新应用。从AI技术到商业变现的过程中,一招不慎,很可能满盘皆输。在AI时代,一个优秀的产品经理,应该具备哪些能力呢?
筑牢基石:AI产品经理的基础知识储备
领域术语精通: 作为AI产品经理,你需要对“监督学习”、“深度学习”、“卷积神经网络”等术语如数家珍,以便与技术人员高效沟通。
技术架构理解: 深入了解AI系统的数据采集、处理、模型训练和部署等环节,为产品设计和优化提供有力支持。
数据与模型掌握: 精通不同数据类型和机器学习模型,以应对多样化的应用场景。
测试方法熟知: 掌握AI模型的测试标准和性能评估方法,确保产品质量。
技术支撑:AI产品的强大后盾
云计算与大数据: 熟练运用云计算平台,掌握数据存储和处理技巧,为AI产品提供数据支持。
AI平台与智能芯片: 熟悉TensorFlow、PyTorch等开发平台,了解TPU、NPU等智能芯片的性能特点,为产品赋能。
边缘计算与智能感知: 掌握边缘计算技术,助力物联网设备实现智能感知。
核心技术:AI产品创新的动力源泉
自然语言处理(NLP): 把握NLP基本原理,将技术应用于智能客服、内容审核等领域。
计算机视觉: 精通图像识别、物体检测等技术,为医疗、安防等行业提供解决方案。
生物特征识别: 了解人脸识别、指纹识别等技术,拓展应用场景。
VR/AR/MR: 关注这些技术与AI的结合,探索创新应用。
行业实践:AI技术落地的关键环节
语言和文字处理: 将NLP技术应用于实际场景,提升产品智能化水平。
图像和视觉处理: 设计基于视觉处理的解决方案,助力行业发展。
大数据分析与预测: 利用大数据技术,为企业提供市场趋势和用户行为预测。
伦理、安全与法律:AI产品经理的道德使命
伦理: 关注算法公平性、透明性和偏见问题,确保产品符合道德标准。
数据安全: 遵循数据隐私法规,保障用户信息安全。
法律合规: 了解AI相关法律法规,确保产品合规性。
跨领域知识:拓宽视野,激发创新
心理学: 了解用户心理,设计更贴近需求的产品。
哲学: 探讨技术对社会、文化的影响,引导产品发展方向。
数学与认知科学: 掌握AI技术背后的数学原理,设计更符合人类行为规律的智能系统。
在这个充满挑战和机遇的时代,AI产品经理将成为引领未来的关键力量。人工智能产品经理是驱动和影响设计、技术、测试、运营和市场等推进产品生命周期的经理人。负责调研需求,确定开发何种人工智能产品,选择何种技术,何种商业模式,负责智能产品盈亏等。人工智能产品经理没有实际的团队领导权,通过驱动和影响其他团队进行工作,对产品成败负责。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
