Stars: 1.0k License: NOASSERTION
这个项目是一个 AI 副业赚钱资讯信息的大合集,主要围绕使用 AIGC 技术生成内容,并分享一些自己的认知。该项目收录了各种利用 AI 技术进行副业赚钱的思路和方法,包括视频变幻、图片创作、文案撰写等多个方面。其核心优势和特点包括:
提供关于如何开始副业最稳妥的策略和建议
分享已验证的一些技术赚钱方案
提供 ai 脚本视频赚钱相关教程与资源
包含音频克隆、音乐生成工具等丰富内容资源
涵盖虚拟人直播以及无人货架直播等领域指南
[WordPress/gutenberg]
Stars: 9.3k License: NOASSERTION
Gutenberg 是 WordPress Gutenberg 项目的开发中心,它代表了 WordPress 网站构建和发布的全新范式。该项目旨在彻底改变整个发布体验,并通过模块化编辑器引入一种崭新的编辑方式。 主要功能包括:区块编辑器、完整网站编辑、区块图案等,并专注于提供直观丰富媒体页面创建方法,无需使用短代码或自定义 HTML。 其核心优势和关键特性包括:
提供最新版本的区块编辑插件
用户文档支持
开放源码并欢迎各类贡献者参与其中
[HuolalaTech/page-spy-web]
Stars: 2.4k License: MIT
Page Spy 是一个用于 Web 项目的远程调试工具。它基于原生 Web API 的封装,在调用时过滤和转换原生方法的参数,并将其转换为特定格式的消息以供调试器客户端消费。该工具提供了类似 DevTools 交互式界面,便于接收到消息数据后进行查看。使用场景包括本地 H5 或 webview 应用程序的调试、远程协作以及用户设备上出现白屏问题等情况下无法通过本地开发者工具进行代码调试时使用。核心优势和主要功能如下:
提供实时项目视图
方便技术人员在远程协作场景中检查并解决故障
支持多种部署方式 (Docker 部署、Node.js 部署)
详细且全面的文档与视频教程指导
[DataTalksClub/mlops-zoomcamp]
Stars: 8.0k License: NOASSERTION
本项目是 MLOps Zoomcamp,旨在教授将机器学习服务投入生产的实际方面——从训练和实验到模型部署和监控。目标受众为数据科学家、ML 工程师以及对将 ML 投入生产感兴趣的软件工程师和数据工程师。 该课程要求具备 Python、Docker 等基础,并提供 Slack 社区支持。 主要功能包括:
介绍 MLOps 成熟度模型
使用 MLflow 进行实验跟踪与模型管理
利用 Prefect 2.0 进行流水线编排等内容
通过端到端项目来应用所学知识
[crablang/crab]
Stars: 5.0k License: NOASSERTION
这是 Crab 编程语言的主要源代码存储库,包含了编译器、标准库和文档。该项目提供快速启动指南,并支持通过命令行工具进行构建和安装。其核心优势和特点包括:
提供简单易用的快速启动指南
支持多平台构建环境
社区提供技术支持及贡献者相关信息
采用 MIT 许可证、Apache 许可证以及其他 BSD 类似许可证分发
[jxxghp/MoviePilot]
Stars: 2.9k License: GPL-3.0
基于 NAStool 部分代码重新设计的 MoviePilot 项目,主要聚焦自动化核心需求,并减少问题同时更易于扩展和维护。 该项目具有以下优势:
前后端分离,界面美观
简化功能和设置
美观易用的用户界面
安装方面需要先安装 CookieCloud 插件并同步站点信息,在配套下载器和媒体服务器上使用
可通过 Docker 镜像或本地运行进行安装配置
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
