从卷文本到卷多模态:国内的大模型公司都在忙什么?

近日,MiniMax 的 AI 视频生成应用「海螺 AI」网页版的访问量暴增,在 9 月增速超 800%。「海螺 AI」、「可灵」等国内 AI 视频生成应用因其生成视频的质量效果较好,在 Reddit 等海外社交平台引起了大量关注。

2024 年,AI 市场关注的重心正逐渐从「模型」到「产品应用」转变。除了常规的 AI 文本对话类应用,多模态的「多」正在成为新的方向。

自 Sora 推出,国内的主要公司陆续跟进,布局视频、音乐、语音等多模态 AI 应用。近期,可灵 AI 海外版、海螺 AI、Vidu 等 AI 视频生成应用表现亮眼;智谱在其 AI 对话应用「智谱清言」中上线「情感语音通话」功能;「AI 六小虎」之一的月之暗面被曝在多模态方面持续投入数月;字节推出 PixelDance、Seaweed 两款视频生成模型…

目录

  1. 哪种做法更有可能实现「真」多模态交互?

MLLM 和 LMM 哪个更有可能实现多模态交互?未来的通用智能是否一定是多模态智能?

  1. 国内第一梯队的 AI 公司及大厂在多模态产品方面布局如何?

在多模态的竞争中,AI大模型创企、科技大厂、多模态大模型服务厂商推出的产品表现如何?在布局上,有何异同?

  1. 多模态应用能否解决国内 AI 创企面临的变现等难题?

为什么产品数据表现亮眼,但距离实现PMF仍有很长的一段路要走?

01 哪种做法更有可能实现「真」多模态交互?

1、目前做多模态大模型主要有两种思路,一种是让 LLM 具备多模态能力的多模态大型语言模型(MLLM),另一种是「原生的」多模态模型,即大型多模态模型(LMM)。

2、让 LLM 具备多模态能力的多模态大型语言模型(MLLM)是目前常用的一种思路。简单来讲,即将大语言模型(LLM)作为大脑来执行多模态任务。[14]

① 通过充分利用现成的预训练单模态基础模型,尤其是 LLM。LLM 负责提供认知功能并提供多种所需能力,比如稳健的语言泛化能力、零样本迁移能力和上下文学习等。

② 中国科学技术大学和腾讯优图实验室在综述论文中,将其定义为「由 LLM 扩展而来的具有接收与推理多模态信息能力的模型」。

③ 由于不同模态的基础模型是单独预训练的,MLLM 的不足在于无法在多模态空间进行深层复杂推理,以及存在不同模态数据对齐的问题。

3、「原生的」多模态模型,即大型多模态模型(LMM)。此前,谷歌推出的 Gemini 模型和 OpenAI 推出的 GPT-4V 模型均属于 LMM。[15]

① LMM 的特点在于模型一开始即在不同模态上进行预训练,利用额外的多模态数据进行微调来提升有效性,AI 能够同时处理和理解文本、图像、声音等多种类型的输入,进而实现多模态交互,充分模拟人与人之间的交互方式。

4、但无论是哪一种思路,目前业内对于多模态大模型的研究都处于早期阶段,面临着模型统一、 不同模态的语义对齐、跨模态关联、模态解耦等不同的技术难题。

5、「全模态端到端」是目前的一个前沿方向。今年 5 月,OpenAI 发布 GPT-4o 模型,GPT-4o 在响应的时长、语音的情感起伏、可打断等方面表现优异。(详细内容见 Week20 通讯)

① 据 OpenAI 的官方博客,在 GPT-4o 的开发中,他们首次尝试使用了一个统一的模型来同时处理文本、视觉和音频信息。这意味着所有的输入和输出都由同一个神经网络完成。

② 此前,业内常用的做法则需要依靠三个专门的模型,先按一个模型语音转换为文本,再用GPT 处理文本生成回复,最后用一个模型将文本转为语音的流程运作。

6、同时,对于纯视觉大模型(LVM)能否实现智能、视觉等其他模态能否使 LLM 更加智能,以及未来的通用智能是否一定是多模态智能,业内也存在诸多争议和探讨。

7、此外,由于 OpenAI 未公布 GPT-4o 模型的技术细节、实现方法,因此国内对于多模态大模型的探索仍处于摸索阶段,技术路线尚未收敛。

① 不同模态的数据,是各家做多模态相关应用的核心,如何获取和构建高质量的业务 SFT 数据是关键。

8、谷歌的 CEO Sundar Pichai 曾预测,「2025 年,多模态大型语言模型将使人类互动达到前所未有的水平,人类与世界的互动并非单一模式,而是多种模式结合。」

① Pichai 在其搜索引擎应用 Google 观察到,视觉查询的数量已达到数十亿,用户通过用手机拍照后向 Google 提问。新的交互方式正在逐渐普及。[16]

02 国内第一梯队的 AI 公司及大厂在多模态产品方面布局如何?

自 Sora、Pika 的陆续推出,「大模型+视频」成为 2024 年重要的趋势。而只有技术还不够,从技术到产品级应用,还有一段路要走。多模态竞争,比拼的是产品化的速度。

1、以国内 AI 视频生成赛道为例来看。近期,可灵 AI 海外版、海螺 AI、Vidu 等 AI 视频生成应用表现亮眼。

① 可灵 AI 海外版作为出海应用,从今年 7 月到 9 月,访问量持续增长,月访问量达 1765 万;

② 海螺 AI 自发布后访问量爆发式增长,今年 9 月,海螺 AI 月访问量翻了近 9 倍,相比 8 月增速高达 867.41%;

③ Vidu 在今年 8 月、9 月访问量从零到 552 万迅速增长,其中 70%的访问量来自海外。

2、从以上三款表现亮眼的应用来看,国内在做 AI 视频生成应用的第一梯队主要为三大阵营:MiniMax、智谱等的 AI 大模型创企;以快手、字节等为代表的大厂;以及生数科技、爱诗科技等多模态大模型服务厂商。

3、从 AI 大模型创企阵营来看,大模型「六小虎」里,AI 视频生成应用势头最猛的是 MiniMax。MiniMax 是「六小虎」里为数不多的布局文本、语音、视频多模态的公司…

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值