4月24日,出门问问成功登陆港股IPO上市,成为中国“AIGC第一股”。据了解,上市首日破发,低开逾21%,报2.98港元,成交额3667.65万港元,总市值44.45亿港元。公司发行约8457万股股份,每股定价3.8港元。
数字开物了解到,出门问问成立于2012年,是一家以生成式AI与语音交互为核心的人工智能公司。通过AI基础设施能力、前沿通用大模型能力(自研大模型「序列猴子」),以及丰富的垂直领域软硬结合的优化算法技术模块,是为数不多的同时服务于消费者、企业、创作者三大类不同群体的公司。
那么,目前大模型市场现状如何?为什么出门问问可以成为AIGC第一股?出门问问的IPO对国内的大模型企业实现盈利带来哪些借鉴意义?
01、全球大模型市场快速发展
中国市场将接近1200亿人民币
全球大模型市场正处于快速发展阶段,随着技术的不断进步和应用场景的拓展,大模型在各个领域发挥着越来越重要的作用。
据大模型之家的测算,2023年全球大模型市场规模将达到210亿美元,预计到2028年,其规模将达到1095亿美元。
特别是在中国,2023年中国大模型产业市场规模预计将达到147亿元人民币1,并且预计到2028年,中国大模型市场规模将接近1200亿人民币。
在融资方面,中国成为AIGC领域融资的重要目的地。2023年上半年,中国共有22笔融资,仅次于美国的21笔融资。其中,月之暗面获得了超过10亿美金的融资,估值达到了约25亿美金,成为国内大模型领域的头部企业之一。
此外,百川智能也进行了新一轮数亿美元融资,将成为国内2024年最大AI领域融资之一。这些数据表明,中国大模型领域的融资活动非常活跃,且有越来越多的资金投入到这一领域。
在盈利方面,虽然中国大模型市场还处于发展初期,但一些企业已经开始实现盈利。这些企业通过提供高质量的大模型解决方案和服务,满足了客户的需求,赢得了市场的认可。同时,随着市场规模的扩大和应用场景的增多,大模型企业的盈利空间也将进一步增大。
那么,为什么说出门问问是有利润的,并且实现盈利的大模型公司呢?
02、从C到B不断尝试新场景
AIGC收入逐渐增长但未形成规模化
数字开物了解到,出门问问最初是一家专注于人工智能技术的公司,拥有自主研发的语音识别、语义分析、垂直搜索等核心技术。这些技术的积累为后续的转型提供了坚实的基础。
最早,出门问问定位C端硬件市场,创始人李志飞曾说C端把产品、渠道做好,天花板会更高,但出门问问最大的烦恼便是商业化。
2015年6月,出门问问发布智能手表Ticwatch及其操作系统,因此获得谷歌投资,至今智能手表都是出门问问硬件的主力。除了智能手表,出门问问也曾尝试过进入智能音箱这个品类。2015年8月,出门问问加入智能音箱“百箱大战”的血腥战局中。
但现实是冲击了出门问问的梦想,2020年到2022年,出门问问智能设备及其硬件收入分别为2.20亿、3.38亿、1.97亿。
2023年上半年,该业务收入5786万,同比下滑37.5%。可以看出,智能设备及硬件业务收入已经连续两年下滑,该业务收入占比也从2020年的83%降至22%。
硬件设备这条路似乎难以走通,随着与大众汽车合作到期,车载业务也面临较大的不确定性,如何找到一条可持续的商业化路径似乎真是出门问问的难题。
随着人工智能技术的快速发展,大模型技术逐渐成为行业内的热点。出门问问敏锐地捕捉到了这一趋势,并开始投入资源进行大模型技术的研发和应用。
2023年4月,出门问问推出AI大语言模型“序列猴子”。 在此之前的2020年,出门问问通过AI配音助手“魔音工坊”进军AIGC领域,陆续推出AI写作助手“奇妙文”、AI绘画助手“言之画”以及AI数字人服务“奇妙元”,这四款产品也是出门问问AIGC解决方案业务的核心产品。
在明确了转型方向后,出门问问开始逐步调整其业务重心。公司逐渐减少了对传统智能设备业务的投入,而将更多的资源和精力投入到大模型技术的研发和应用中。同时,公司还加强了与产业链上下游企业的合作,共同推动大模型技术的发展和应用。
截至2023年11月28日,出门问问拥有超过800万名AIGC解决方案累计注册用户,以及约60万名累计付费用户。
目前,出门问问的业务可分成两大模块:AIoT解决方案以及AI软件解决方案。
其一,AIoT解决方案。 这是出门问问最早起步的业务,现已推出各种AIoT智能设备,包括AI智能手表「TicWatch系列」、AI智能跑步机「Mobvoi Home Treadmill Incline」等产品,其通过软硬件结合设备,逐步将AI技术应用于“可穿戴、汽车和智能家居”三大人机交互生活场景。
其二,AI软件解决方案(包括AIGC解决方案和AI企业解决方案)。这又可拆分为针对内容创作者的AIGC解决方案以及针对企业的AI软件解决方案。
而针对企业的全栈式AI软件解决方案则涵盖以全链路交互为基础,为汽车和金融行业等多个行业提供人性化、智能化的AI语音交互解决方案;以及将智能语音交互技术应用于客户服务场景,以降低成本及提高运营效率的智能客户服务解决方案等。
目前,出门问问已为汽车、金融、物联网、医疗、零售等应用场景的100多家企业提供服务。自2020年以来,预装出门问问车载语音交互解决方案的汽车超过200万辆。
财务数据方面。根据招股书显示,2021-2023年,出门问问的收入分别是3.97亿元、5.02亿元和5.07亿元。从收入构成来看,出门问问AIoT解决方案的收入占比在2020年至2022年大幅下降。
相较之下,其中,AIGC解决方案在2021-2023年的收入分别为682.2万元、3985.7万元和1.18亿元,复合年增长率超300%,在2020年至2022的收入占比分别为0.2%、1.7%和8.0%。AI软件解决方案的收入占比由2020年的17.0%上升至2022年的60.6%,对应的收入由4497.2万元飙升至3.03亿元。
虽然打着“AIGC”的旗号进行自我宣传,但出门问问的AIGC解决方案收入并未形成足够的规模。
03、大模型企业如何才能赚钱?
红点中国执行董事张学思认为,出门问问能够盈利,首先,公司一直在不断尝试寻找落地场景, 从早期C端的智能音箱,到与汽车相关的智能硬件,再到B端的场景,到现在推出的魔音产品,才找到合适的商业化场景,使技术和产品结合,商业化落地,也能很好的平衡公司的研发与商业化的探索。
其次,出门问问的产品和交付模式更轻量化, 比如音频、ocr类产品,交付成本很低,对公司的利润,营收还是有优势的。
目前来说,业界认为大模型企业如果想实现商业化变现,赚钱盈利,还是要从这几个方面考虑:
第一,明确大模型的应用场景和目标市场, 为客户提供有针对性的解决方案。这包括深入了解客户需求,开发符合市场需求的产品和服务,并不断优化产品性能以满足客户期望。
第二,持续投入研发,保持技术领先。 大模型企业需要不断创新,提升模型的性能、准确性和效率。通过引进先进技术、与高校和研究机构合作等方式,加强技术研发能力,形成核心竞争力。
同时,利用大模型技术提供数据服务,满足企业在数据分析、决策支持等方面的需求。通过搭建数据服务平台,提供定制化的大模型解决方案,帮助客户解决实际问题。同时,加强运营管理能力,提升服务质量和客户满意度。
第三,积极开拓市场,寻找合作伙伴,扩大市场份额。 通过参加行业展会、举办技术研讨会、开展市场推广活动等方式,提高品牌知名度和影响力。同时,与产业链上下游企业建立合作关系,共同推动大模型技术的发展和应用。
此外,大模型企业实现盈利和赚钱是一个长期的过程,需要耐心和毅力。企业需要保持敏锐的市场洞察力,不断调整和优化战略,以适应市场的变化和需求。同时,加强与合作伙伴的沟通和协作,共同推动大模型技术的发展和应用,实现共赢。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
