零基础学AI大模型要多久?真的能学会吗?

随着人工智能技术的迅猛发展,AI大模型成为了当前最热门的技术领域之一。很多人对AI大模型既充满好奇又感到陌生,特别是对于那些完全没有编程基础的人来说,从零开始学习AI大模型似乎是一项艰巨的任务。但实际上,只要有足够的决心和正确的方法,任何人都有可能成为AI大模型领域的专家。本文将探讨从零基础学习AI大模型需要多长时间,以及如何确保你能够真正学会。

学习时间:自学 vs 培训
自学:

自学是最常见的一种学习方式,尤其适合那些自学能力强、善于自我管理的人。如果你选择自学,从零基础开始学习AI大模型,大致需要一年半左右的时间。当然,具体时间会根据个人的学习效率、理解能力和每天投入学习的时间而有所不同。如果你已经有其他编程语言的基础,比如Java或C++,那么入门可能会更快,大约需要2到3个月就能上手编写一些简单的应用。

培训:

参加培训课程则是另一种加快学习进度的方法。一般而言,培训课程的学习周期在五到六个月左右。这样的课程通常由经验丰富的讲师指导,通过系统化的教学安排和实际项目练习,帮助学生更快地掌握所需技能。对于零基础的学习者来说,通过培训可以在6个月内基本掌握AI大模型的基础知识,但这仅仅是一个开始,后续还需要大量的实践来巩固所学。

学习路径:分阶段学习

无论是自学还是参加培训,一个合理的学习路径都是非常重要的。以下是一个建议的学习路径:

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

学习AI大模型的关键
  • 实践积累:精通任何一门技术都需要大量的实践来积累经验。解决遇到的各种问题,阅读优秀的源代码,并分享自己的代码。参与开源项目可以提高实战能力。
  • 不断实践:从一开始就要不断地编写代码,不停地修改和完善,总结经验教训,最终才能达到熟练掌握AI大模型的目的。
  • 持续跟进新技术:AI领域发展迅速,持续学习最新的研究成果和技术趋势是非常重要的。

通过上述步骤,你可以系统地学习并掌握AI大模型的相关知识和技术,为成为一名专业的AI大模型开发者打下坚实的基础。只要你愿意投入时间和精力,坚持不懈地学习和实践,从零基础学习AI大模型并不是一件遥不可及的事情。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值