装上stable-diffusion-webui之后,不亦乐乎的玩了几天,画出来的图不是邪魅奔跑的绵羊,就是三只眼的柯基。要画个养眼的小姐姐并不是那么容易…
即使有webui界面操作,对新手而言也要搞清楚几个概念和步骤:
checkpoint
stable-diffusion-webui 第一次运行时会自动下载基础模型v1-5-pruned-emaonly.safetensors
画人我们还需要下载 chilloutmix_NiPrunedFp32Fix.safetensors模型,现在网上各种“老婆”基本上都是基于这个checkpoint来绘制
https://civitai.com/models/6424/chilloutmix?modelVersionId=11745
stable-diffusion基础模型文件放置在 $SD_PATH/models/Stable-diffusion 目录下。我们下载chilloutmix模型之后,需要将其拷贝到该目录下,或者是按Stable Diffusion checkpoint 下拉框右边的刷新按钮,然后下拉选中新模型,sd-webui就会重新加载模型。
Lora模型
然后下载这三个Doll模型,可以给自己画个日系或者韩系老婆,或者三系混搭也不错。
https://civitai.com/models/28811/japanesedolllikeness-v15
https://civitai.com/models/26124/koreandolllikeness-v20
https://civitai.com/models/48363/taiwandolllikeness-v20
OR
https://huggingface.co/Kanbara/doll-likeness-series
Lora模型下载后需要拷贝到$SD_PATH/models/Lora目录下,点击 “Generate"出图按钮下面红色的奇怪按钮"extra networks” ,调出Lora模型的预览拦,如果点击Lora中的模型,sd-webui会自动生成一个对应模型的prompt。
然而,这几个模型对于横图的小姐姐都不太行,各种蹦,躺着的更是垮上天, 来两张垮掉的小姐姐辣辣眼睛
Prompt
emphasis
提示词可以用小括号或者中括号显示说明该提示词的重要性(emphasis)系数
- (word) 表示word的重要性系数为1.1
- ((word)) 表示word的重要性系数为1.1*1.1 = 1.21
- [word] 表示word的重要性系数为0.9 ??
- (word:1.5) 表示word的重要性系数为1.5
- (word:0.25) 表示word的重要性系数为0.25
- (word) 表示转义括号
() 可以自定义重要性系数, [] 不可以
Lora模型提示词
lora:filename:multiplier
其中filname表示Lora模型的文件名,multiplier 为该模型的权重系数,prompt中所有Lora模型的multiplier 之和要小于1
其他参数
选完模型和参数,设置完提示词之后,还有几个参数需要设置
Sampling method: civitai上大部分小姐姐选用的也是“DPM++ SDE Karras“模型
Sampling steps: 推荐28-35.
CGF Scale: 数值越高,会越取向于你所输入的提示, 一般7-10是一个比较平衡的区间
Restore faces: 脸部修复,如果不进行脸部修复,小姐姐的脸部表情相当僵硬.
Seed: 随机数种子
勾选完Restore faces,sd-webui会自动下载脸部修复的模型,如果由于网络原因下载失败,可以手动下载三个模型放置到对应的 facelib/ 目录和 CodeFormer/ 目录下
$ export SD_PATH=~/workspace/StableDiffusion/
$ cd $SD_PATH/stable-diffusion-webui/repositories/CodeFormer/scripts/weights/
$ export https_proxy="http://127.0.0.1:8080" # 设置wget科学上网
$ wget -O ./facelib/detection_Resnet50_Final.pth "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth"
$ wget -O ./facelib/parsing_parsenet.pth "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth"
$ wget -O ./CodeFormer/codeformer.pth "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。