刚刚!Stable diffusion 2024升级版终于来了!(无需安装,解压即用)

AI绘画工具stable diffusion安装

今天来教大家AI绘画,

目前AI绘画领域最火、应用最广泛的就是stable diffusion

所以今天就教大家怎么安装使用sd

补充一下,目前AI绘画领域被提到最多的有三个:

midjourney、stable diffusion、dalle

midjourney和dalle都是收费的

stable diffusion免费,而且功能强大、可定制化能力强

所以今天就教大家安装使用stable diffusion

简介

先演示一下它强大的绘画功能,他可以文生图和图生图。

这是我提供的参考图:
先演示一下它强大的绘画功能,他可以文生图和图生图。

这是我提供的参考图:
在这里插入图片描述

这是stable diffusion修改后的图:

在这里插入图片描述

是不是也很好看呢?(不过确实有点粗糙和不合理,是我没有好好设置参数,不是软件不行)

软件功能介绍

具备文生图和图生图功能

文生图就是根据提示词和参数设置生成图片

界面如下图所示:

在这里插入图片描述

图生图是根据提示词和参考图生成图

图生图功能还包括:图生图、涂鸦、局部重回、涂鸦重绘等

在这里插入图片描述

硬件配置要求

  • 操作系统:Windows、macOS

  • 显卡:不低于6GB显存

  • 内存:不低于16GB的内存

  • 安装空间:12GB以上

安装步骤

1,下载文件。文末点击卡片即可获得安装包

2,解压sd-webui-aki-v4.8,解压密码:bilibili@秋葉aaaki

3,双击“启动器运行依赖”安装

4,进入解压后的sd-webui-aki-v4.8,运行A绘世启动器.exe

5,点击 一键启动,等待加载完成后会自动在你的浏览器打开界面,就可以使用了

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的扫描下方二维码,即可前往免费领取!

在这里插入图片描述

### Stable Diffusion 3 发布信息和特性 #### 架构特点 Stable Diffusion 3采用扩散转换器架构作为其核心竞争力,这种架构使得模型能够更有效地处理复杂的图像生成任务[^1]。 #### 性能提升 相比前代版本,Stable Diffusion 3在多个方面实现了显著改进。具体来说,在文本语义理解、色彩饱和度、图像构图等多个维度上均有增强,尤其值得注意的是对于多主题提示的支持以及更高的图像质量[^2]。 #### 参数规模与适用性 此款新型号拥有不同大小的变体,最小版仅有8亿参数而最大可达80亿参数。这样的设计不仅让高性能计算成为可能,同时也确保了轻量化部署的需求得到满足,甚至能够在移动终端等资源受限环境中运行良好[^4]。 #### 对比其他模型的表现 当与其他同类产品如 MidJourney 进行比较时,Stable Diffusion 3展现出了不俗的竞争实力;然而面对某些特定领域内的专用解决方案(例如 OUYSD3),则显示出更为优越的整体性能优势[^3]。 ```python # Python代码示例用于展示如何加载预训练好的StableDiffusionV3模型 from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-3" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe.to("cuda") prompt = "A fantasy landscape with a castle on top of the mountain under starry sky." image = pipe(prompt).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值