AI绘画神器Stable Diffusion下载安装指北【收藏版】

今天分享一个AI绘画神器 - Stable Diffusion。

过年这几天自己部署了下sd,使用的是秋叶大佬的整合包,还真是方便,分分钟就能启动。

软件领取看文末~

Stable Diffusion

使用秋叶大佬发布的【绘世整合包】作为软件,它是目前市面上最易于使用的整合包之一,无需对网络和Python有太多的前置知识。

绘世启动器整合包于2023年4月16日发布,集成了过去几个月中AI绘画集中引爆的核心需求,例如ControlNet插件和最新的深度学习技术。它能够与外部环境完全隔离开来,即使对编程没有任何知识的人也可以从零开始学习使用Stable Diffusion,而且几乎无需调整就能够体验到最新、最核心的技术。

SD 基本概念

大模型:通过使用素材和SD低模生成的深度学习大模型,可以直接应用于生成图像。大模型是创作的核心素材,决定了最终作品的方向和风格。这些大模型的扩展名一般为CKPT或SAFETENSORS。建议使用至少8GB显存的GPU进行操作。

VAE:VAE是对大模型的补充,类似于滤镜,可以稳定画面的色彩范围,提高作品的美观度。VAE的扩展名一般为CKPT或SAFETENSORS。建议使用不低于8GB显存的GPU进行操作。

LoRA:LoRA是一种模型插件,需要在基于某个大模型的基础上进行深度学习后生成小型模型。需要与大模型配合使用,可以在涵盖中小范围内的风格上产生影响或增加大模型缺失的元素。如果基于SD低模生成,则在不同大模型之间更换使用时具有更好的通用性和适用性。LoRA的扩展名一般为CKPT或SAFETENSORS。ControlNet:ControlNet是一个神级插件,让SD具备了分析图片中线条和景深等信息的能力,并反推到处理图片上。这对于创作出真正自然、真实的图像非常有用。

Stable Diffusion Web-UI(SD-WEBUI):SD-WEBUI是使用Stability AI算法制作的开源软件,可以通过浏览器操作SD。这个开源软件不仅插件齐全、易于使用,而且可以随时得到更新和支持。SD-WEBUI运行环境基于Python,因此需要一定的编程知识进行操作。

秋叶整合包:秋叶整合包是中国大神秋叶开发的整合包,内置了与电脑本身系统隔离的Python环境和Git。可以忽略网络需求和Python环境的门槛,让更多人轻松地使用SD-WEBUI。

电脑配置要求

以下配置并不严谨也不绝对,只是个人判断,仅供参考

在这里插入图片描述
在这里插入图片描述

安装教程

1.下载下来,并解压,文件较大,请耐心下完。

在这里插入图片描述

2.安装必备软件,傻瓜式安装

在这里插入图片描述
3.打开启动器

在这里插入图片描述
4.在这里点击一键启动

在这里插入图片描述
这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值