基于注意力机制的机器翻译模型

目录

一、实验原理

1、机器翻译

2、Encoder-Decoder框架

3、注意力机制

二、实验步骤

1、数据预处理

2、模型构建

3、模型训练

4、模型评估

三、实验内容

1、数据读取和预处理

2、含注意力机制的编码器—解码器

2.1 编码器

2.2 注意力机制

2.3 含注意力机制的解码器

3、模型训练

4、预测不定长的序列

5、模型评估

6、用更大的数据集(Tatoeba Project)训练模型

四、实验总结

五、完整代码


一、实验原理

1、机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言,包括文字机器翻译和语音机器翻译。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

2、Encoder-Decoder框架

Encoder-Decoder框架是一个通用的构架,是一类算法统称。根据不同的任务可以选择不同的编码器和解码器。

下图展示编码-解码结构:

序列到序列模型,简单来说就是一个翻译模型,把一个语言序列翻译成另一种语言序列,即将一个序列作为输入映射为另外一个输出序列。

编码器是一个循环神经网络,通常使用LSTM或GRU,负责将一个不定长的输入序列变换成一个定长的语义向量。

解码器也是一个循环神经网络,负责根据语义向量生成指定的序列,这个过程称为解码,解码的过程有两种不同的 结构,其不同点在于语义向量是否应用于每一时间步的输出。

模型的训练主要需要考虑三个部分:编码器的输入、解码器的输入和解码器的输出。

3、注意力机制

注意力机制通过对编码器所有时间步的隐状态做加权平 均来得到语义向量。 通过引入注意力机制,解码器输出序列的每个词条都会依赖一个与“上下文”相关的可变语义向量,而不再依赖一个相同的语义向量。

通过对比,我们可以发现基于注意力机制的编码-解码框架具有以下优点:

  • 长距离依赖处理:注意力机制允许模型在处理当前输入时关注输入序列中的任意位置,这使得模型能够更好地捕获长距离依赖关系。

  • 并行化计算:允许并行处理输入序列中的所有位置,从而显著加快了训练速度。

  • 动态权重分配:注意力机制可以根据输入内容动态调整权重,从而在处理不同上下文时自适应地选择重要的信息。

  • 更好的表示能力:通过注意力机制,模型能够生成更丰富的上下文表示,从而提高了编码和解码过程的质量。

  • 可解释性增强:注意力权重可以提供一定程度的可解释性,使我们能够理解模型是如何将注意力分配到不同部分的输入数据上,这有助于分析和改进模型的性能。

二、实验步骤

1、数据预处理

因为数据集的构成可能很复杂,我们在实验开始之前,需要对数据进行预处理。在接下来的实验中,我们会将数据构建成方便我们实验的结构。通过处理,我们保证了序列的等长,并且用空格将两段序列隔开,以保证我们实验的准确性,

2、模型构建

我们将构建含有注意力机制的编码-解码模型。按照模型的顺序构建了编码器,注意力机制和含有注意力机制的解码器。

3、模型训练

  • 初始化模型参数

  • 数据预处理

  • 优化损失计算

  • 定义模型参数和训练参数

4、模型评估

  • 评估标准:使用BLEU指标来评估翻译质量。
  • 生成翻译:给出部分测试样例查看模型翻译的结果,与参考翻译进行比较。

三、实验内容

1、数据读取和预处理

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

代码如下:

# 导入所需的库
import collections  # 用于提供高效的数据结构如 defaultdict, Counter 等
import os          # 用于进行操作系统相关的操作,例如文件路径管理
import io          # 用于处理输入输出操作
import math        # 提供数学函数和常量
import torch       # PyTorch 主库,用于深度学习
from torch import nn  # 从 PyTorch 导入神经网络模块
import torch.nn.functional as F  # 导入 PyTorch 的功能性 API
import torchtext.vocab as Vocab  # 导入 torchtext 中的词汇表处理模块
import torch.utils.data as Data  # 导入数据处理的工具,包括数据集和数据加载器

import sys  # 用于操作 Python 运行时环境
# sys.path.append("..") 
# 导入自定义的 d2lzh_pytorch 库,这是一本教程的代码实现
import d2lzh_pytorch as d2l

# 定义特殊标记符号:填充符、序列开始符和序列结束符
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# 设置环境变量,用于指定可见的 GPU 设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 根据是否有可用的 GPU,将计算设备设置为 'cuda' 或 'cpu'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 打印 PyTorch 的版本和当前使用的设备
print(torch.__version__, device)

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
# 定义函数以处理序列,将其转换为固定长度并记录所有词汇
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    # 将当前序列中的所有词添加到所有词的集合中
    all_tokens.extend(seq_tokens)
    # 在序列末尾添加结束符,并填充PAD使其长度达到max_seq_len
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    # 将处理后的序列添加到所有序列的集合中
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    # 使用所有词汇和特殊标记构建词典
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    # 将所有序列中的词转换为索引,并构建为列表
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    # 将列表转换为Tensor并返回
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

# 读取数据文件,将输入和输出序列转换为固定长度,并构建词典和数据集。
def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    # 打开文件并按照行读取数据
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    # 遍历每一行数据
    for line in lines:
        # 去除行尾空白字符并用制表符分割成输入和输出序列
        in_seq, out_seq = line.rstrip().split('\t')
        # 将输入和输出序列分别按空格分割成词列表
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        # 如果序列长度加上结束符后超过最大长度,则忽略该样本
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        # 处理输入序列并将其添加到相应的词汇和序列集合中
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        # 处理输出序列并将其添加到相应的词汇和序列集合中
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    # 构建输入序列的词典和对应的数据Tensor
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    # 构建输出序列的词典和对应的数据Tensor
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    # 返回输入和输出的词典,以及包含输入和输出数据的Tensor数据集
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

结果输出:

2、含注意力机制的编码器—解码器

2.1 编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        """
        初始化编码器。

        参数:
        - vocab_size: 词汇表的大小,即输入的单词数。
        - embed_size: 每个词向量的维度。
        - num_hiddens: GRU隐藏层的单元数。
        - num_layers: GRU的层数。
        - drop_prob: 丢弃概率,用于dropout层,防止过拟合。
        """
        super(Encoder, self).__init__(**kwargs)
        # 定义词嵌入层,将词索引转换为词向量
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 定义GRU层
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        """
        前向传播。

        参数:
        - inputs: 输入张量,形状为 (batch_size, seq_len),即批量大小和时间步数。
        - state: 初始隐藏状态,通常为None或者一个包含隐藏状态的张量。

        返回:
        - output: GRU的输出,形状为 (seq_len, batch_size, num_hiddens)。
        - state: 最后一个时间步的隐藏状态。
        """
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        # 将输入转换为词向量,并调整维度以适应GRU层
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        # embedding 形状为 (seq_len, batch_size, embed_size)
        return self.rnn(embedding, state)
        # 通过GRU层,计算输出和新的隐藏状态

    def begin_state(self):
        """
        初始化隐藏状态。

        返回:
        - 初始隐藏状态,通常为None或者一个包含隐藏状态的张量。
        """
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

# 创建编码器实例(门控循环单元的隐藏层个数为2,隐藏单元个数为16)
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
# 调用编码器的forward方法(创建一个批量大小为4、时间步数为7的小批量序列输入)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
# 输出编码器的输出形状和状态形状
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

结果输出:

2.2 注意力机制

我们将实现(注意力机制)中定义的函数𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎定义里向量𝑣的长度是一个超参数,即attention_size

代码如下:

def attention_model(input_size, attention_size):
    """
    创建一个注意力机制模型。

    参数:
    input_size (int): 输入特征的维度。
    attention_size (int): 注意力机制隐层的维度。

    返回:
    nn.Sequential: 一个包含两层线性变换和一个 Tanh 激活函数的顺序模型。
    """
    # 创建一个顺序模型(Sequential),顺序地传递输入数据通过定义的层
    # 第一层是线性变换,将输入大小从 input_size 转换为 attention_size,没有偏置项
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          # Tanh 非线性激活函数,用于增加模型的表达能力
                          nn.Tanh(),
                          # 第二层是线性变换,将隐层大小从 attention_size 转换为 1,没有偏置项
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

# 给定的参数
seq_len, batch_size, num_hiddens = 10, 4, 8
# 创建注意力模型
model = attention_model(2*num_hiddens, 10) 
# 创建编码器状态张量和解码器状态张量(这里用全零张量代替)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
# 计算注意力权重的形状
attention_forward(model, enc_states, dec_state).shape

2.3 含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

代码如下:

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

3、模型训练

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同上一个实验(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

代码如下:

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 创建优化器,用于调整模型参数以最小化损失函数
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
    
    # 定义损失函数,这里使用交叉熵损失,并设置为不立即求和(reduction='none')
    loss = nn.CrossEntropyLoss(reduction='none')
    # 将数据集封装到DataLoader中,以便进行批量处理和随机打乱
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            # 在每个批次开始时清除优化器的梯度
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            
            # 计算当前批次的损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            
            # 反向传播计算梯度
            l.backward()
            
            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()
            
            # 累加当前批次的损失
            l_sum += l.item()
            
        # 每10个epoch打印一次平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

# 定义模型参数和训练参数
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50

# 创建编码器和解码器实例
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)

# 调用训练函数进行模型训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

结果输出:

通过观察训练结果,我们可以看到,随着训练次数的增加,损失值先快速下降,随后在50次以后就下降平缓,最后基本不再下降。

4、预测不定长的序列

我们前面实验中介绍了3种方法来生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。首先,我们先介绍一下贪婪搜索。

贪婪搜索(Greedy Search)是一种启发式搜索算法,用于在问题空间中寻找解决方案。它的主要特点是每一步都选择当前看起来最优的选项,而不考虑未来可能的后果。即,每一步选择过程中都贪心地选取局部最优解,希望通过这样的步骤能够最终达到全局最优解。对于输出序列任一时间步𝑡′,我们从|y|个词中搜索出条件概率最大的词

作为输出。一旦搜索出"<eos>"符号,或者输出序列长度已经达到了最大长度𝑇′,便完成输出。

贪婪搜索的主要特点:

  1. 启发式方法:贪婪搜索通常使用启发式函数来评估每个选择的优劣。启发式函数根据当前状态快速估算出到目标状态的代价或距离,从而指导选择。

  2. 局部最优:每个步骤都选择当前最优的选项。这意味着贪婪搜索并不回溯或重新考虑之前的选择,除非某些变体允许这样做。

  3. 效率高:由于每一步只考虑当前最优选择,贪婪搜索通常比其他搜索算法(如广度优先搜索或深度优先搜索)速度更快,适用于需要快速找到一个可行解的情况。

  4. 不保证全局最优:贪婪算法的主要缺点是它可能无法找到全局最优解,因为局部最优选择未必会通向全局最优解。

接下来,我们定义模型。模型大致思路包括输入处理、编码器输入、编码器处理、编码器初始化、解码过程以及返回输出。

代码如下:

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列以空格拆分成单词列表
    in_tokens = input_seq.split(' ')
    # 添加结束符 (EOS) 和填充符 (PAD),使其长度达到 max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列映射到词汇表索引,并转换为张量
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 初始化编码器的隐藏状态
    enc_state = encoder.begin_state()
    # 通过编码器处理输入序列,得到编码器输出和最终隐藏状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器输入为开始符 (BOS)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    # 使用编码器的最终隐藏状态初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 存储输出的 token
    output_tokens = []
    # 解码过程
    for _ in range(max_seq_len):
        # 通过解码器获取输出和新的隐藏状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 获取概率最高的预测索引
        pred = dec_output.argmax(dim=1)
        # 将索引转换为对应的 token
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果预测的 token 是结束符 (EOS),停止解码
        if pred_token == EOS:  
            break
        else:
            # 否则,添加到输出 token 列表中
            output_tokens.append(pred_token)
            
            # 将当前预测作为下一个时间步的输入
            dec_input = pred
    # 返回生成的序列
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

5、模型评估

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛的子序列的精度为𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,预测序列为𝐴、𝐵、𝐵、𝐶、𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设𝑙𝑒𝑛label和𝑙𝑒𝑛pred分别为标签序列和预测序列的词数,那么,BLEU的定义为

其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。

下面来实现BLEU的计算。

代码如下:

def bleu(pred_tokens, label_tokens, k):
    """
    计算BLEU评分,用于评估预测文本(pred_tokens)与参考文本(label_tokens)之间的相似度。
    
    参数:
    pred_tokens (list of str): 预测文本的标记列表。
    label_tokens (list of str): 参考文本的标记列表。
    k (int): 最大的n-gram长度。
    
    返回:
    float: 计算得到的BLEU评分。
    """
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    # 初始化BLEU评分,处理预测文本较短的情况
    # score = exp(min(0, 1 - len_label / len_pred)) 用于惩罚预测文本过短的情况
    score = math.exp(min(0, 1 - len_label / len_pred))
    # 遍历从1到k的所有n-gram长度
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int) 
        # 计算参考文本中所有长度为n的子字符串的频次
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        # 统计预测文本中与参考文本匹配的n-gram的数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        # 计算当前n-gram的精确度,并更新总的BLEU评分
        # 使用加权幂的方式减轻高阶n-gram对整体评分的影响
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

接下来,定义一个辅助打印函数。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。例如我们刚刚输入的内容,我们计算BLEU

6、用更大的数据集(Tatoeba Project)训练模型

因为机器翻译是个很负责很庞大的工作,我们在现实中不可能只是个几句话的数据集。现在我们换用更大的数据集对模型进行训练。

我们从下面网站中可以下载法语-英语的数据集。Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)These files can easily be imported into Anki or similar flashcard program.icon-default.png?t=N7T8http://www.manythings.org/anki/

但是在接下来的模型训练过程中,遇到了很多问题。

首先,我们下载数据集并解压缩。打开后发现该数据集跟我们之前模型中定义的结构差别很大。

上图是数据集中的一部分。我们可以看到,只有前面两个句子是我们需要的、所以我们要对数据进行处理。

数据处理后,我们保留了我们需要的句子。我只选取了数据集中的一部分。

接下来我们进行模型训练。

我们发现损失值基本在1左右,经过仔细研究,我发现数据集中英语字段和法语字段弄反了,但是调整数据集太麻烦了,我们将计就计,改为英翻法。

我们就简单输入一个句子“It was a good idea.”进行翻译。这句话在法语中应该翻译为“Ce fut une bonne idée.”

最后我们计算预测的BLEU值。

四、实验总结

本次实验中,我们详细介绍了注意力机制和编码-解码框架的定义,以及如何构建一个含注意力机制的编码器-解码器模型用于机器翻译任务。对于机器学习实验,我们需要有实验清晰的思路。

  1. 数据预处理
  2. 模型选择与构建
  3. 模型训练
  4. 模型评价
  5. 模型优化

我们首先对数据进行预处理的操作,并且添加索引,然后构建了编码器和解码器模型,其中包含注意力机制。接着,我们先运用小数据集训练模型并测试其翻译效果。最后,我们使用BLEU指标对翻译结果进行了评价。在完成大致实验后,我们尝试使用更大的数据集来训练模型,以此防止过拟合和欠拟合问题,也可以提高模型的翻译能力。

核心内容:

  • Encoder-Decoder框架
  • 注意力机制
  • BLEU

问题总结:在运用Tatoeba Project数据集训练模型时,对数据预处理这一操作感到很头疼。因为原数据集和我们所需要的最终数据集结构完全不一样,而且数据集很庞大,所以速度也很慢。

通过实现和训练一个基于注意力机制的编机器翻译模型,我们展示了如何在实际应用中进行机器翻译任务。本次实验不仅可以帮助我们更好的理解了注意力机制等核心模型的应用,更让我们更好的掌握自然语言处理的核心技术。

五、完整代码

# 导入所需的库
import collections  # 用于提供高效的数据结构如 defaultdict, Counter 等
import os          # 用于进行操作系统相关的操作,例如文件路径管理
import io          # 用于处理输入输出操作
import math        # 提供数学函数和常量
import torch       # PyTorch 主库,用于深度学习
from torch import nn  # 从 PyTorch 导入神经网络模块
import torch.nn.functional as F  # 导入 PyTorch 的功能性 API
import torchtext.vocab as Vocab  # 导入 torchtext 中的词汇表处理模块
import torch.utils.data as Data  # 导入数据处理的工具,包括数据集和数据加载器

import sys  # 用于操作 Python 运行时环境
# sys.path.append("..") 
# 导入自定义的 d2lzh_pytorch 库,这是一本教程的代码实现
import d2lzh_pytorch as d2l

# 定义特殊标记符号:填充符、序列开始符和序列结束符
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# 设置环境变量,用于指定可见的 GPU 设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 根据是否有可用的 GPU,将计算设备设置为 'cuda' 或 'cpu'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 打印 PyTorch 的版本和当前使用的设备
print(torch.__version__, device)

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
# 定义函数以处理序列,将其转换为固定长度并记录所有词汇
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    # 将当前序列中的所有词添加到所有词的集合中
    all_tokens.extend(seq_tokens)
    # 在序列末尾添加结束符,并填充PAD使其长度达到max_seq_len
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    # 将处理后的序列添加到所有序列的集合中
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    # 使用所有词汇和特殊标记构建词典
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    # 将所有序列中的词转换为索引,并构建为列表
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    # 将列表转换为Tensor并返回
    return vocab, torch.tensor(indices)

# 读取数据文件,将输入和输出序列转换为固定长度,并构建词典和数据集。
def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    # 打开文件并按照行读取数据
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    # 遍历每一行数据
    for line in lines:
        # 去除行尾空白字符并用制表符分割成输入和输出序列
        in_seq, out_seq = line.rstrip().split('\t')
        # 将输入和输出序列分别按空格分割成词列表
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        # 如果序列长度加上结束符后超过最大长度,则忽略该样本
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        # 处理输入序列并将其添加到相应的词汇和序列集合中
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        # 处理输出序列并将其添加到相应的词汇和序列集合中
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    # 构建输入序列的词典和对应的数据Tensor
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    # 构建输出序列的词典和对应的数据Tensor
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    # 返回输入和输出的词典,以及包含输入和输出数据的Tensor数据集
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        """
        初始化编码器。

        参数:
        - vocab_size: 词汇表的大小,即输入的单词数。
        - embed_size: 每个词向量的维度。
        - num_hiddens: GRU隐藏层的单元数。
        - num_layers: GRU的层数。
        - drop_prob: 丢弃概率,用于dropout层,防止过拟合。
        """
        super(Encoder, self).__init__(**kwargs)
        # 定义词嵌入层,将词索引转换为词向量
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 定义GRU层
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        """
        前向传播。

        参数:
        - inputs: 输入张量,形状为 (batch_size, seq_len),即批量大小和时间步数。
        - state: 初始隐藏状态,通常为None或者一个包含隐藏状态的张量。

        返回:
        - output: GRU的输出,形状为 (seq_len, batch_size, num_hiddens)。
        - state: 最后一个时间步的隐藏状态。
        """
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        # 将输入转换为词向量,并调整维度以适应GRU层
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        # embedding 形状为 (seq_len, batch_size, embed_size)
        return self.rnn(embedding, state)
        # 通过GRU层,计算输出和新的隐藏状态

    def begin_state(self):
        """
        初始化隐藏状态。

        返回:
        - 初始隐藏状态,通常为None或者一个包含隐藏状态的张量。
        """
        return None

# 创建编码器实例(门控循环单元的隐藏层个数为2,隐藏单元个数为16)
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
# 调用编码器的forward方法(创建一个批量大小为4、时间步数为7的小批量序列输入)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
# 输出编码器的输出形状和状态形状
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

def attention_model(input_size, attention_size):
    """
    创建一个注意力机制模型。

    参数:
    input_size (int): 输入特征的维度。
    attention_size (int): 注意力机制隐层的维度。

    返回:
    nn.Sequential: 一个包含两层线性变换和一个 Tanh 激活函数的顺序模型。
    """
    # 创建一个顺序模型(Sequential),顺序地传递输入数据通过定义的层
    # 第一层是线性变换,将输入大小从 input_size 转换为 attention_size,没有偏置项
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          # Tanh 非线性激活函数,用于增加模型的表达能力
                          nn.Tanh(),
                          # 第二层是线性变换,将隐层大小从 attention_size 转换为 1,没有偏置项
                          nn.Linear(attention_size, 1, bias=False))
    return model

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

# 给定的参数
seq_len, batch_size, num_hiddens = 10, 4, 8
# 创建注意力模型
model = attention_model(2*num_hiddens, 10) 
# 创建编码器状态张量和解码器状态张量(这里用全零张量代替)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
# 计算注意力权重的形状
attention_forward(model, enc_states, dec_state).shape

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 创建优化器,用于调整模型参数以最小化损失函数
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
    
    # 定义损失函数,这里使用交叉熵损失,并设置为不立即求和(reduction='none')
    loss = nn.CrossEntropyLoss(reduction='none')
    # 将数据集封装到DataLoader中,以便进行批量处理和随机打乱
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            # 在每个批次开始时清除优化器的梯度
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            
            # 计算当前批次的损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            
            # 反向传播计算梯度
            l.backward()
            
            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()
            
            # 累加当前批次的损失
            l_sum += l.item()
            
        # 每10个epoch打印一次平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

# 定义模型参数和训练参数
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 100

# 创建编码器和解码器实例
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)

# 调用训练函数进行模型训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列以空格拆分成单词列表
    in_tokens = input_seq.split(' ')
    # 添加结束符 (EOS) 和填充符 (PAD),使其长度达到 max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列映射到词汇表索引,并转换为张量
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 初始化编码器的隐藏状态
    enc_state = encoder.begin_state()
    # 通过编码器处理输入序列,得到编码器输出和最终隐藏状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器输入为开始符 (BOS)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    # 使用编码器的最终隐藏状态初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 存储输出的 token
    output_tokens = []
    # 解码过程
    for _ in range(max_seq_len):
        # 通过解码器获取输出和新的隐藏状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 获取概率最高的预测索引
        pred = dec_output.argmax(dim=1)
        # 将索引转换为对应的 token
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果预测的 token 是结束符 (EOS),停止解码
        if pred_token == EOS:  
            break
        else:
            # 否则,添加到输出 token 列表中
            output_tokens.append(pred_token)
            
            # 将当前预测作为下一个时间步的输入
            dec_input = pred
    # 返回生成的序列
    return output_tokens

input_seq = 'ils regardent'
translate(encoder, decoder, input_seq, max_seq_len)

def bleu(pred_tokens, label_tokens, k):
    """
    计算BLEU评分,用于评估预测文本(pred_tokens)与参考文本(label_tokens)之间的相似度。
    
    参数:
    pred_tokens (list of str): 预测文本的标记列表。
    label_tokens (list of str): 参考文本的标记列表。
    k (int): 最大的n-gram长度。
    
    返回:
    float: 计算得到的BLEU评分。
    """
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    # 初始化BLEU评分,处理预测文本较短的情况
    # score = exp(min(0, 1 - len_label / len_pred)) 用于惩罚预测文本过短的情况
    score = math.exp(min(0, 1 - len_label / len_pred))
    # 遍历从1到k的所有n-gram长度
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int) 
        # 计算参考文本中所有长度为n的子字符串的频次
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        # 统计预测文本中与参考文本匹配的n-gram的数量
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        # 计算当前n-gram的精确度,并更新总的BLEU评分
        # 使用加权幂的方式减轻高阶n-gram对整体评分的影响
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

score('ils regardent .', 'they are watching .', k=2)

  • 31
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值