数学建模国赛(二)整数规划模型(分支定界、割平面、匈牙利算法)

目录

一、梦开始的地方

1、什么是整数规划模型?

2、解的情况

3、问题分类

4、数学模型

二、分支定界算法求解 

三、割平面算法求解

1、基本思想

2、解题步骤

3、实际应用

四、匈牙利算法求解


一、梦开始的地方

1、什么是整数规划模型?

决策变量限制为整数,比如人的数量,机器的数量等。

2、解的情况

(1)原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

(2)整数规划无可行解。

(3)有可行解(当然也存在最优解),但是最优解变差。

整数规划最优解不能按照实数最优解简单取整而获得。

3、问题分类

根据决策变量取整要求的不同,可以分为纯整数规划、全整数规划、混合整数规划、0-1整数规划。

纯整数规划(完全整数规划):所有决策变量都要求取非负整数(引进的松弛变量和剩余变量可以不要求为整数)。

全整数规划:除了所有决策变量要求取非负整数外,系数aij和常量bij也要求取整数(引进的松弛变量和剩余变量也必须是整数)。

混合整数规划:只有一部分决策变量要求取非负整数。

0-1整数规划:所有决策变量只能取0或1两个整数。

4、数学模型

二、分支定界算法求解 

(后续更新)

三、割平面算法求解

1、基本思想

(1)如果松弛问题(P0)无解,则该整数规划问题(P)无解。

(2)如果松弛问题的最优解为整数向量,则也是该整数规划问题的最优解。<

终于到了的日子,不过凑巧的是当时本人学院上学期疫情的考试安排在的本学期开始,这意味着我要开始边备考边建模,顶着挂科的压力放肆复习。 选题的话,之前说过了果断选的新颖B题(穿越沙漠)。 简单说下我们的思路: 我们对题的理解是这题情景非常具体,数据需要少,感觉三问都是优化模型,而且需要很强的编程。 首先我们分析题目,对游戏规则摸清楚,没有急着建模。 涉及到路线、事件的选择,使用 0-1 变量等定义模型。 最短路径用Floyd算法或者基本可以数出来,考察的是最优路径以及路径前对资源的购买(收益最大)。 第一问: 在第一关和第关的探险过程中,运用初始的资金对于资源进行合理的分配,可以通过线性规划,确定好在未来一段时间的消耗与收益,制定好合理的规划,通过 MATLAB 计算出需要使用的资源。经过多次训练对比,最终计算出最优策略,对比资金数量。因为不确定答案是否正确,后来我们又用excel表格进行了推导,最后得到是12730,与优秀论文中的12760相比小了30块,估计大概因为这个答案的问题,没有一。 第问: 第问与第一问相比提升了难度,如果玩家在进行策略安排的时候, 不知道天气的状况那么小伙伴们可以自己商讨给出何种方案,比如多买水,多买食物等等方法,再这之后通过选择最优路径进行合理的方法选择并讨论,具体的解决方法是通过编程和启发式算法的excel解决的。 第三问: (1) 对于n 名相同的初始资金,且同时从起点出发的玩家来说,游戏规则需要进一步注意规范,为了保证多方共赢,在天气状况已知的情况下, 可以通过先前 MATLAB 中的神经网络算法算出的最优旅行路线,计算多次的结果进行对比,保证不会出现重复的状况, 剔除掉重复出现的次数。因为天气状况已知,所以相对比较好安排合理的路线,对于安排好的路线分别进行编号,再依次进行合理的计算,最终确定结果,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼哥myg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值