目录
一、梦开始的地方
1、什么是整数规划模型?
决策变量限制为整数,比如人的数量,机器的数量等。
2、解的情况
(1)原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
(2)整数规划无可行解。
(3)有可行解(当然也存在最优解),但是最优解变差。
整数规划最优解不能按照实数最优解简单取整而获得。
3、问题分类
根据决策变量取整要求的不同,可以分为纯整数规划、全整数规划、混合整数规划、0-1整数规划。
纯整数规划(完全整数规划):所有决策变量都要求取非负整数(引进的松弛变量和剩余变量可以不要求为整数)。
全整数规划:除了所有决策变量要求取非负整数外,系数aij和常量bij也要求取整数(引进的松弛变量和剩余变量也必须是整数)。
混合整数规划:只有一部分决策变量要求取非负整数。
0-1整数规划:所有决策变量只能取0或1两个整数。
4、数学模型

二、分支定界算法求解
(后续更新)
三、割平面算法求解
1、基本思想
(1)如果松弛问题(P0)无解,则该整数规划问题(P)无解。
(2)如果松弛问题的最优解为整数向量,则也是该整数规划问题的最优解。<

最低0.47元/天 解锁文章
7652

被折叠的 条评论
为什么被折叠?



