电子对抗大作业

博客包含对俄乌冲突电子战装备等的分析,结合学科谈对电子对抗的认识,还给出地面跟踪制导雷达指标,需对其信号侦察以实施自卫式干扰,最后提供了电子对抗大作业文档链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、查阅资料,对俄乌冲突的电子战装备、表现、启示等进行分析。

2、结合自己的学科、专业、课题,谈谈你对电子对抗的认识。

3、设在距目标10Km远处,有一地面跟踪制导雷达,主要指标如下:工作频率为12GHz~18GHz,采用伪随机跳频,跳频速率为400H/s。脉冲重复周期10ms,脉宽100ns,发射峰值功率50kW,雷达天线采用垂直线极化,主瓣增益为10dBi,平均旁瓣增益为-15dBi。为对其实施有效自卫式干扰,首先需对该雷达信号进行侦察。

具体答案:

电子对抗大作业-20221002183318.doc-原创力文档 (book118.com)icon-default.png?t=M85Bhttps://max.book118.com/html/2022/1002/7125134012005000.shtm

### 杭州电子科技大学计算机视觉课程大型作业资料与题目 关于杭州电子科技大学计算机视觉课程中的大型作业,通常会涉及理论知识的应用以及实际项目开发。这类作业旨在帮助学生深入理解并掌握计算机视觉的核心概念和技术。 #### 一、常见的大型作业主题 1. **图像分类** 图像分类是计算机视觉领域的一个基础任务,通过构建卷积神经网络模型来实现不同类别图片的有效区分[^1]。 2. **目标检测** 学生可能被要求设计一个能够识别特定物体位置及其类别的算法系统,这涉及到边界框回归和多尺度特征融合等技术要点。 3. **语义分割** 此类型的作业会让参与者探索如何让机器学习到每像素级别的标签信息,从而完成对复杂场景下各个组成部分的理解与标注工作。 4. **姿态估计** 基于深度学习方法来进行人体或其他生物体的姿态捕捉研究也是一个热门方向,在此过程中需要处理大量的视频数据集,并训练相应的预测模型。 5. **风格迁移** 利用GANs(生成对抗网络)等相关工具创造艺术效果的作品转换程序也是教学实践中非常有趣的课题之一。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(): model = models.resnet50(pretrained=True) model.eval() return model transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) image_path = "example.jpg" img = Image.open(image_path).convert('RGB') input_tensor = transform(img).unsqueeze(0) model = load_model() with torch.no_grad(): output = model(input_tensor) print(output) ``` 上述代码片段展示了加载预训练ResNet50模型并对单张图片进行推理的过程,适用于图像分类任务的教学演示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值