自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 机器学习——PCA主成分分析法

在这种情况下,可以使用PCA对这些向量进行降维,将每张图像表示为一个包含较少元素的向量,从而使得计算和存储成本大大降低。同时,PCA还能够从这些低维向量中提取出最具代表性的信息,以便于后续s的人脸识别任务。主成分分析(PCA)是一种常用的数据降维方法,可以将高维数据转换为低维空间,同时保留原始数据中最具代表性的信息。中,如果要识别人脸,需要将每张图像表示为一个向量,每个元素代表图像中某个像素点的灰度值。其中协方差描述两个数据的相关性,接近1为正相关,接近-1为负相关,接近0为不相关。

2024-01-01 21:59:23 928

原创 支持向量机(机器学习)

优点:可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。缺点:对参数调节和和函数的选择敏感。适用的数据类型:数值型和标称型数据b%3E0%2Cif1b%3C0%2Cifa_ib%29%3E0。

2023-12-18 21:21:04 1189

原创 Logistic回归

1.线性模型与回归线性模型一般模式:回归:现有一些数据点,我们用 一条直线对这些点进行拟合,该线称为最佳拟合直线,这个拟合过程就称作回归。使得。

2023-12-04 20:12:51 1744

原创 朴树贝叶斯算法(垃圾邮件分类)

朴素贝叶斯(Naive Bayes)算法是一种基于统计的分类算法,常用于文本分类和垃圾邮件过滤等任务。它是基于贝叶斯定理和特征条件独立假设的。

2023-11-20 21:37:06 552 2

原创 决策树(机器学习)

决策树是一种常见的机器学习算法,它被广泛用于分类和回归问题。决策树模型的主要思想是通过对特征进行递归分割,构建一棵树状的结构来对数据进行预测。在决策树中,每个内部节点表示对一个特征的判断,每个叶子节点表示一个类别或一个回归值。决策树的构建过程主要包括特征选择、节点划分和剪枝三个主要步骤。特征选择决定了在每个节点上选择哪个特征来进行划分,常用的特征选择指标包括信息增益、信息增益比、基尼系数等。节点划分是通过选择一个划分点将数据划分为更纯的子节点,常见的划分方法有ID3、C4.5、CART等。

2023-11-06 20:47:48 277

原创 性能评估指标(精确率、召回率、ROC、AUC)

经验误差、过拟合和欠拟合是机器学习中常见的概念,它们与模型的性能和泛化能力相关。经验误差(Empirical Error)是指在训练数据上的误差或损失。它是通过将模型应用于训练数据并计算预测结果与真实结果之间的差异得出的。通常,我们的目标是尽量减小经验误差,使训练模型在训练数据上有更好的拟合。过拟合(Overfitting)是指模型在训练数据上表现得过于优秀,但在新数据上表现不佳。过拟合可能是由于模型过于复杂、训练数据过少或存在噪声数据等原因引起的。

2023-10-23 12:38:55 699 1

原创 机器学习——K-临近算法(KNN)

K临近算法(K-Nearest Neighbor algorithm,简称KNN)是一种常用的分类与回归算法。在分类问题中,KNN根据预先确定的K值,在训练数据集中找到与待分类样本最相似的K个样本,并根据它们的分类标签来确定待分类样本的类别。在回归问题中,KNN则根据预先确定的K值,在训练数据集中找到与待预测样本最相似的K个样本,并根据它们的数值来预测待预测样本的值。KNN主要依据样本之间的距离度量进行分类或回归,并假设离待分类或待预测样本更近的样本具有更高的相似度。

2023-10-09 15:23:41 737 1

原创 机器学习环境搭建(vscode+anaconda的安装+conda虚拟环境的激活)

visual studio code是一款免费、开源的代码编译器,支持多种编译语言,具有语法高亮,智能代码补全、调试功能、版本控制等特点。前序:机器学习环境搭建是一个重要的步骤,它可以让你在一个方便和高效的平台上进行机器学习的开发和测试。安装完成后,你可以打开vscode,然后在左侧的拓展栏搜索并安装python插件。Anaconda包含了conda,python在内的许多包及其依赖项,为每个python环境安装不同的包,不同环境相互切换,操作简单,使用方便。1.检测安装是否成功。2.打开cmd命令行。

2023-09-26 14:11:17 432

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除