1. 什么是递归
2. 递归的限制条件
3. 递归的举例
4. 递归与迭代
1. 递归是什么?
递归是学习C语言函数绕不开的⼀个话题,那什么是递归呢?
递归其实是⼀种解决问题的方法,在C语言中,递归就是函数自己用自己。
写⼀个史上最简单的C语言递归代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main() {
printf("hehe\n");
main();
return 0;
}
上述就是⼀个简单的递归程序,只不过上面的递归只是为了演市递归的基本形式,不是为了解决问题,代码最终也会陷⼊死递归,导致栈溢出。
1.1
递归的思想:
把⼀个大型复杂问题层层转化为⼀个与原问题相似,但规模较小的自问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。 递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。
1.2
递归的限制条件
递归在书写的时候,有2个必要条件:
*
递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
*
每次递归调用之后越来越接近这个限制条件。
在下面的例子中,我们逐步体会这2个限制条件。
2. 递归举例
2.1 例1:求n的阶乘
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作 n!。 题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。
比如5的阶乘,5!=1*2*3*4*5。
2.1.1 分析和代码实现
可以得出n的阶乘公式:n!=n*(n-1)!
从这个公式不难看出:如何把⼀个较大的问题,转换为⼀个与原问题相似,但规模较小的问题来解 的。 n的阶乘和n-1的阶乘是相似的问题,但是规模要少了n。有⼀种有特殊情况是:当 n==0
的时候,n的 阶乘是1,而其余n的阶乘都是可以通过上面的公式计算。 这样就能写出 n 的阶乘的递归公式如下:

那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
效果实现:
代码:
#include <stdio.h>
int diao(int n) {
if (n == 0)
return 1;
else
return n * diao(n - 1);
}
int main() {
int n = 0;
scanf("%d", &n);
int da = diao(n);
printf("%d\n", da);
return 0;
}
2.1.2 画图推演
2.2
举例2:顺序打印⼀个整数的每⼀位,输入⼀个整数m,按照顺序打印整数的每⼀位。
比如:
输⼊:1234 输出:1 2 3 4
输⼊:520 输出:5 2 0
2.2.1 分析和代码实现
这个题目,放在我们面前,首先想到的是,怎么得到这个数的每⼀位呢?
如果n是⼀位数,n的每⼀位就是n自己,n是超过1位数的话,就得拆分每⼀位
1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4 ,然后继续对123%10,就得了3,再除10去掉3,以此类推 不断的 %10 和 /10 操作,直到1234的每⼀位都得到; 但是这⾥有个问题就是得到的数字顺序是倒着的。
但是我们有了灵感,我们发现其实⼀个数字的最低位是最容易得到的,通过%10就能得到
那我们假设想写⼀个函数Print来打印n的每⼀位,如下表示:
Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10) + printf(123%10)
以此类推下去,就有:
Print(1234)
==>Print(123) + printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束。
那么代码完成也就比较清楚:

#include <stdio.h>
void Print(int n)
{
if (n > 9)
{
Print(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int m = 0;
scanf("%d", &m);
Print(m);
return 0;
}
在这个解题的过程中,我们就是使用了大事化小的思路
把Print(1234) 打印1234每⼀位,拆解为首先Print(123)打印123的每⼀位,再打印得到的4
把Print(123) 打印123每⼀位,拆解为首先Print(12)打印12的每⼀位,再打印得到的3
直到Print打印的是⼀位数,直接打印就行.
2.2.2 画图推演
以1234每一位的打印来推演一下

3. 递归与迭代
递归是⼀种很好的编程技巧,但是和很多技巧⼀样,也是可能被误⽤的,就像举例1⼀样,看到推导的
公式,很容易就被写成递归的形式:

int Fact(int n)
{
if(n == 0)
return 1;
else
return n * Fact(n-1);
}
Fact函数是可以产生正确的结果,但是在递归函数调用的过程中涉及⼀些运行时的开销。
在C语⾔中每⼀次函数调用,都需要为本次函数调用在内存的栈区,申请⼀块内存空间来保存函数调用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就⼀直占用,所以如果函数调用中存在递归调用的话,每⼀次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采⽤函数递归的方式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。
所以如果不想使用递归,就得想其他的办法,通常就是迭代的方式(通常就是循环的方式)。比如:计算 n 的阶乘,也是可以产⽣1~n的数字累计乘在⼀起的。
int Fact(int n)
{
int i = 0;
int ret = 1;
for(i = 1; i <= n; i++)
{
ret *= i;
}
return ret;
}
举例3:求第n个斐波那契数
我们也能举出更加极端的例子,就像计算第n个斐波那契数,是不适合使用递归求解的,但是斐波那契数的问题通过是使⽤递归的形式描述的,如下:

看到这公式,很容易诱导我们将代码写成递归的形式,如下所示
int Fib(int n)
{
if(n <= 2)
return 1;
else
return Fib(n-1) + Fib(n-2);
}
#include <stdio.h>
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
当我们n输⼊为50的时候,需要很⻓时间才能算出结果,这个计算所花费的时间,是我们很难接受的, 这也说明递归的写法是⾮常低效的,那是为什么呢?

其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计
算,⽽且递归层次越深,冗余计算就会越多。我们可以作业测试:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if(n == 3)
count++;//统计第3个斐波那契数被计算的次数
if(n <= 2)
return 1;
else
eturn Fib(n-1)+Fib(n-2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
printf("\ncount = %d\n", count);
return 0;
}
这里我们看到了,在计算第40个斐波那契数的时候,使⽤递归方式,第3个斐波那契数就被重复计算了 39088169次,这些计算是非常冗余的。所以斐波那契数的计算,使用递归是非常不明智的,我们就得 想迭代的方式解决。
我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。
这样就有下面的代码:
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
迭代的方式去实现这个代码,效率就要高出很多了。有时候,递归虽好,但是也会引入⼀些问题,所以我们⼀定不要迷恋递归,适可而止就好。