考研数学大题高分攻略与数学大题答题模板学习法
目录
一、前言
考研数学的主观题大多有相对固定的解题步骤,其实也是有类似于英语作文模板的数学主观大题答题模板,于此接近考研冲刺阶段,对已经没有太多复习时间而基础又相对较弱的同
学可能是一根救命稻草。而对于基础较好的同学则可以更加规范化解题,是取得高分的捷径。
【评卷的得分点】
考研的评卷是这样的,就主观大题而言,阅卷老师会先看答案,正确的话会再看几个关键的公式和步骤,如果必要的公式和步骤都有,一般会给满分,如果答案不对,再自上而下看解题步骤,
根据步骤给分,答案不对,但步骤对了,会给相应的步骤分。从出题老师的研究发现其实大题都有相对固定的答题步骤。因此只要掌握模板,就算不会计算,不能得出最后的正确答案,也能得步骤分。你不需要知道怎么做,只需要记住第一步写什么,第二步写什么,只要有步骤,就有步骤分,零基础也能轻松过线,真正实现:弱者过线,强者高分。
二、【高分大题数学模板】
那么怎么使用大题数学模板?直接上干货--数学大题答题模板,快拿出笔记下来哦~
下面是最重点的题型,大家需要根据自身情况加以掌握。
1、数列极限的证明题模板【三种不同类型】
2、概率题做题答题模板
3、极限渐近线大题模板
4、文章内容太多,下期内容我们继续更新ing,记得收藏我们这个系列哦。
------------------------------------------------------------------------------------------------
三、考研数学重点知识点总结
- 高数知识点目录及重点
- 线性代数知识点目录及重点
- 概率论与数理统计知识点目录及重点
- 如何使用数学大题答题模板学习法
- 资源简介
(一、高数知识点目录及重点
1. 函数、极限与连续
- 知识点:
- 函数概念:复合函数、反函数、初等函数
- 极限概念:数列极限、函数极限(左极限、右极限)
- 连续概念:左连续、右连续、开区间连续、闭区间连续
- 重点详细内容:
- 理解函数的基本性质,如单调性、奇偶性、周期性、有界性。
- 掌握极限存在准则,如夹逼准则、单调有界准则。
- 熟练运用极限的性质进行有理运算。
- 如何学习:
- 通过大量练习,熟悉函数和极限的基本题型和解题方法。
- 理解极限的几何意义和物理背景,加深对极限概念的理解。
2. 导数与微分
- 知识点:
- 导数概念:左导数、右导数、开区间可导、闭区间可导
- 微分概念及几何意义
- 高阶导数
- 重点详细内容:
- 掌握初等函数的导数公式及求导法则。
- 理解导数在几何、物理中的应用,如速度、加速度、切线斜率等。
- 学会利用导数判断函数的单调性、极值、最值、凹凸性等。
- 如何学习:
- 通过实例理解导数的几何意义和物理意义。
- 熟练掌握求导的基本方法和技巧,如复合函数求导、隐函数求导等。
3. 微分中值定理及导数应用
- 知识点:
- 微分中值定理:费马定理、罗尔定理、拉格朗日定理、柯西定理
- 洛必塔法则
- 曲线渐近线
- 重点详细内容:
- 理解并掌握微分中值定理的证明和应用。
- 学会利用洛必塔法则求解极限问题。
- 掌握曲线渐近线的求解方法。
- 如何学习:
- 通过证明题练习,加深对微分中值定理的理解。
- 灵活运用洛必塔法则求解复杂极限问题。
4. 积分
- 知识点:
- 不定积分:概念与性质、三种主要积分法
- 定积分:概念、性质、计算方法
- 反常积分
- 重点详细内容:
- 熟练掌握不定积分和定积分的计算方法。
- 理解定积分的几何意义和物理意义,如面积、体积、功等。
- 学会求解反常积分。
- 如何学习:
- 通过大量练习,掌握不定积分和定积分的计算方法。
- 理解定积分的几何和物理背景,加深对定积分概念的理解。
5. 多元函数微积分
- 知识点:
- 多元函数极限、连续、偏导数与全微分
- 多元函数微分法:复合函数微分法、隐函数微分法
- 二重积分、三重积分
- 重点详细内容:
- 掌握多元函数极限、连续、偏导数与全微分的概念和计算方法。
- 学会利用多元函数微分法求解相关问题。
- 熟练掌握二重积分和三重积分的计算方法。
- 如何学习:
- 通过实例理解多元函数微积分的应用背景。
- 熟练掌握多元函数微积分的基本方法和技巧。
(二、线性代数知识点目录及重点
1. 行列式
- 知识点:
- 行列式的定义与性质
- 行列式的计算方法
- 重点详细内容:
- 理解行列式的几何意义,如面积、体积等。
- 熟练掌握行列式的计算方法,如拉普拉斯展开定理。
- 如何学习:
- 通过实例理解行列式的几何意义。
- 熟练掌握行列式的计算方法,并灵活运用。
2. 矩阵
- 知识点:
- 矩阵的定义与性质
- 矩阵的运算:加法、减法、乘法、转置、逆矩阵
- 高次矩阵
- 重点详细内容:
- 理解矩阵的基本性质,如可逆性、秩等。
- 熟练掌握矩阵的运算方法和技巧。
- 如何学习:
- 通过实例理解矩阵的应用背景。
- 熟练掌握矩阵的基本运算方法和技巧。
3. 向量
- 知识点:
- 向量的定义与性质
- 向量的线性运算与线性组合
- 向量的线性相关与线性无关
- 重点详细内容:
- 理解向量的基本概念和性质。
- 掌握向量的线性运算和线性组合的方法。
- 学会判断向量的线性相关与线性无关。
- 如何学习:
- 通过实例理解向量的应用背景。
- 熟练掌握向量的基本运算方法和技巧。
4. 线性方程组
- 知识点:
- 线性方程组的定义与性质
- 线性方程组的解法:高斯消元法、克拉默法则
- 同解方程组与公共解
- 重点详细内容:
- 理解线性方程组的基本概念和解的性质。
- 熟练掌握线性方程组的解法。
- 学会判断同解方程组和公共解。
- 如何学习:
- 通过实例理解线性方程组的应用背景。
- 熟练掌握线性方程组的解法,并灵活运用。
5. 特征值与特征向量
- 知识点:
- 特征值与特征向量的定义与性质
- 相似矩阵与相似对角化
- 二次型
- 重点详细内容:
- 理解特征值与特征向量的基本概念和性质。
- 掌握相似矩阵与相似对角化的方法和技巧。
- 学会求解二次型的标准形和惯性指数。
- 如何学习:
- 通过实例理解特征值与特征向量的应用背景。
- 熟练掌握相似矩阵与相似对角化的方法和技巧。
(三、概率论与数理统计知识点目录及重点
1. 随机事件与概率
- 知识点:
- 随机事件的定义与性质
- 概率的定义与性质
- 条件概率与全概率公式
- 重点详细内容:
- 理解随机事件和概率的基本概念。
- 掌握条件概率和全概率公式的应用。
- 如何学习:
- 通过实例理解随机事件和概率的应用背景。
- 熟练掌握条件概率和全概率公式的计算方法。
2. 随机变量及其分布
- 知识点:
- 随机变量的定义与性质
- 离散型随机变量的分布律与分布函数
- 连续型随机变量的概率密度函数
- 重点详细内容:
- 理解随机变量的基本概念和性质。
- 掌握离散型随机变量和连续型随机变量的分布律和概率密度函数的求解方法。
- 如何学习:
- 通过实例理解随机变量的应用背景。
- 熟练掌握随机变量的分布律和概率密度函数的求解方法。
3. 随机变量的数字特征
- 知识点:
- 数学期望与方差
- 协方差与相关系数
- 大数定律与中心极限定理
- 重点详细内容:
- 理解数学期望、方差、协方差和相关系数的基本概念。
- 掌握大数定律和中心极限定理的应用。
- 如何学习:
- 通过实例理解数字特征的应用背景。
- 熟练掌握数学期望、方差、协方差和相关系数的计算方法。
4. 数理统计
- 知识点:
- 样本与样本分布
- 参数估计:点估计与区间估计
- 假设检验
- 重点详细内容:
- 理解样本与样本分布的基本概念。
- 掌握参数估计的方法和技巧。
- 学会进行假设检验。
- 如何学习:
- 通过实例理解数理统计的应用背景。
- 熟练掌握参数估计和假设检验的方法和技巧。
这期内容我们就分享到这里,下期更精彩哦!!