[NOIP2004 提高组] 合并果子 [USACO06NOV] Fence Repair G
题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 =3+12=15 。可以证明 15 为最小的体力耗费值。
输入格式
共两行。 第一行是一个整数 n(1\leq n\leq 10000) ,表示果子的种类数。
第二行包含 n 个整数,用空格分隔,第 i 个整数 a_i(1\leq a_i\leq 20000) 是第 i 种果子的数目。
输出格式
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31} 。
样例 #1
样例输入 #1
3 1 2 9
样例输出 #1
15
提示
对于 30\% 的数据,保证有 n \le 1000:
对于 50\% 的数据,保证有 n \le 5000;
对于全部的数据,保证有 n \le 10000。
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#define LL long long
using namespace std;
priority_queue<LL, vector<LL>, greater<LL>> q;//小顶堆优先队列
int n;
int x,y;
LL ans;
int main()
{
cin >> n;
for (auto i = 1; i <= n; i++)
{
cin >> x;
q.push(x);
}
for (auto i = 1; i < n ; i++)
{
x=q.top();
q.pop();
y=q.top();
q.pop();
ans+=x+y;
q.push(x+y);
}
cout << ans << endl;
return 0;
}
跳跳!
题目描述
你是一只小跳蛙,你特别擅长在各种地方跳来跳去。
这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 i 块的石头高度为 h_i,地面的高度是 h_0 = 0。你估计着,从第 i 块石头跳到第 j 块石头上耗费的体力值为 (h_i - h_j) ^ 2,从地面跳到第 i 块石头耗费的体力值是 (h_i) ^ 2。
为了给小 F 展现你超级跳的本领,你决定跳到每个石头上各一次,并最终停在任意一块石头上,并且小跳蛙想耗费尽可能多的体力值。
当然,你只是一只小跳蛙,你只会跳,不知道怎么跳才能让本领更充分地展现。
不过你有救啦!小 F 给你递来了一个写着 AK 的电脑,你可以使用计算机程序帮你解决这个问题,万能的计算机会告诉你怎么跳。
那就请你——会写代码的小跳蛙——写下这个程序,为你 NOIp AK 踏出坚实的一步吧!
输入格式
输入一行一个正整数 n,表示石头个数。
输入第二行 n 个正整数,表示第 i 块石头的高度 h_i。
输出格式
输出一行一个正整数,表示你可以耗费的体力值的最大值。
样例 #1
样例输入 #1
2 2 1
样例输出 #1
5
样例 #2
样例输入 #2
3 6 3 5
样例输出 #2
49
提示
样例解释
两个样例按照输入给定的顺序依次跳上去就可以得到最优方案之一。
数据范围
对于 1 \leq i \leq n,有 0 < h_i \leq 10 ^ 4,且保证 h_i 互不相同。
对于 10\% 的数据,n \leq 3;
对于 20\% 的数据,n \leq 10;
对于 50\% 的数据,n \leq 20;
对于 80\% 的数据,n \leq 50;
对于 100\% 的数据,n \leq 300。
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#define LL long long
using namespace std;
int n;
int l, r;
int h[305];
LL ans = 0;
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> h[i];
}
h[0] = 0;
l=0, r=n;
sort(h, h+n+1);//nlogn
while (l < r)
{
ans+=( (h[r] - h[l])* (h[r] - h[l]));
l++;
ans += ((h[r] - h[l]) * (h[r] - h[l]));
r--;
}
cout << ans << endl;
return 0;
}
老鼠和奶酪 leetcode2611
有两只老鼠和 n 块不同类型的奶酪,每块奶酪都只能被其中一只老鼠吃掉。
下标为 i 处的奶酪被吃掉的得分为:
-
如果第一只老鼠吃掉,则得分为 reward1[i] 。
-
如果第二只老鼠吃掉,则得分为 reward2[i] 。
给你一个正整数数组 reward1 ,一个正整数数组 reward2 ,和一个非负整数 k 。
请你返回第一只老鼠恰好吃掉 k 块奶酪的情况下,最大 得分为多少。
示例 1:
输入:reward1 = [1,1,3,4], reward2 = [4,4,1,1], k = 2 输出:15 解释:这个例子中,第一只老鼠吃掉第 2 和 3 块奶酪(下标从 0 开始),第二只老鼠吃掉第 0 和 1 块奶酪。 总得分为 4 + 4 + 3 + 4 = 15 。 15 是最高得分。
示例 2:
输入:reward1 = [1,1], reward2 = [1,1], k = 2 输出:2 解释:这个例子中,第一只老鼠吃掉第 0 和 1 块奶酪(下标从 0 开始),第二只老鼠不吃任何奶酪。 总得分为 1 + 1 = 2 。 2 是最高得分。
提示:
-
1 <= n == reward1.length == reward2.length <= 10^{5}
-
1 <= reward1[i], reward2[i] <= 1000
-
0 <= k <= n
class Solution {
public:
int miceAndCheese(vector<int>& reward1, vector<int>& reward2, int k) {
int ans = 0;
int n = reward1.size();
vector<int> diffs(n);
for (int i = 0; i < n; i++) {
ans += reward2[i];
diffs[i] = reward1[i] - reward2[i];
}
sort(diffs.begin(), diffs.end());
for (int i = 1; i <= k; i++) {
ans += diffs[n - i];
}
return ans;
}
};