【应用多元统计分析】CH1 矩阵代数

目录

一、定义

二、矩阵的运算

1.相关运算

2.运算规律

3.正交矩阵

(1)定义

(2)几何意义

4.矩阵的分块

(1)定义

(2)运算

(3)【例】

三、行列式

1.定义

2.基本性质

3.代数余子式

四、矩阵的逆

1.定义

2.基本性质

五、矩阵的秩

1.相关定义

2.基本性质

六、特征值、特征向量

1.相关定义

2.基本性质

七、矩阵的迹

1.定义

2.基本性质

八、正定矩阵和非负定矩阵

1.定义

2.基本性质

九、特征值的极值问题

1.柯西-许瓦兹不等式

2.推广的柯西-许瓦兹​编辑不等式

3.特征值的极值问题

(1)​

(2)


一、定义

  • p*q矩阵:A=\begin{pmatrix} a_{11} &a_{12} & \cdots & a_{1q}\\ a_{21} &a_{22} & \cdots & a_{2q}\\ \vdots & \vdots & & \vdots \\ a_{p1} &a_{p2} & \cdots & a_{pq} \end{pmatrix}_{p*q}
  • p维列向量:a=\begin{pmatrix} a_{1}\\ a_{2}\\ \vdots \\ a_{p} \end{pmatrix}
  • q维行向量:a^{'}=(a_{1},a_{2},\cdots,a_{q})
  • 向量a长度\left \| a \right \|=\sqrt{a^{'}a}=\sqrt{a_{1}^2+\cdots,a_{p}^2}
  • 单位向量\left \| a \right \|=1
  • 零矩阵:若A的所有元素全为零,则称A为零矩阵,记作A=0_{pq}/A=0
  • p=q,则称Ap方阵a_{11},a_{22},\cdots,a_{pp}称为它的对角线元素,其他元素称为非对角线元素
  • 若方阵A的对角线下方的元素全为零,则称A上三角矩阵
  • 若方阵A的对角线上方的元素全为零,则称A下三角矩阵

  • 若方阵A的所有非对角线元素全为零,则称A对角矩阵,简记为

A=diag(a_{11},a_{22},\cdots,a_{pp})

  • p阶对角矩阵A的所有p个对角线元素均为1,则称Ap阶单位矩阵,记作A=I_{p}/A=I
  • 若将矩阵A的行与列互换,则得到的矩阵称为A的转置,记作A^{'}
  • 若方阵A满足A=A^{'},则称A对角矩阵
  • 若方阵A满足A^2=A,则称A幂等矩阵
  •  若方阵A满足A^2=A,A^{'}=A,则称A投影矩阵

二、矩阵的运算

1.相关运算

  • A=(a_{ij})_{p*q},B=(b_{ij})_{p*q},则A+B=(a_{ij}+b_{ij})_{p*q}
  • c为一常数,则它与A的积定义为cA=(ca_{ij})_{p*q}
  • A=(a_{ij})_{p*q},B=(b_{ij})_{q*r}\Rightarrow AB=\left ( \sum_{k=1}^{q}a_{ik}b_{kj} \right )_{p*r}

2.运算规律

  • (A+B)^{'}=A^{'}+B^{'}
  • (AB)^{'}=B^{'}A^{'}
  • A(B_{1}+B_{2})=AB_{1}+AB_{2}
  • A\left ( \sum_{i=1}^{k}B_{i} \right )=\sum_{i=1}^{k}AB_{i}
  • c(A+B)=cA+cB

3.正交矩阵

(1)定义

        若两个p维向量a,b满足a^{'}b=a_{1}b_{1}+a_{2}b_{2}+\cdots+a_{p}b_{p}=0,则称a,b正交。几何上,正交向量之间相互垂直。

        若方阵A满足AA^{'}=I,则称A为正交矩阵。

        显然,\sum_{j=1}^{p}a_{ij}^2=1,i=1,2,\cdots,p,即Ap个行向量为单位向量;\sum_{j=1}^{p}a_{ij}a_{kj}=0,i\neq k,即Ap个行向量相互正交。又从A^{'}A=I得,

\sum_{i=1}^{p}a_{ij}^2=1,j=1,2,\cdots,p;\sum_{i=1}^{p}a_{ij}a_{ki}=0,j\neq k

Ap个列向量也相互正交。

(2)几何意义

        将p维向量x看成是在R^{p}中的一个点,则x的各分量是该点在相应各坐标轴上的坐标。正交矩阵的行列式非1即-1,若\left | A \right |=1,则正交变换y=Ax意味着对原p维坐标系作一刚性旋转(或称为正交旋转),y的各分量正是该点在新坐标下的坐标;若\left | A \right |=-1,则包含了一个反射的坐标轴。

        当p=2时,按逆时针方向将直角坐标系x_{1}Ox_{2}旋转一个角度\theta,所得新坐标y_{1}Oy_{2}与原坐标之间的变换为y=\begin{pmatrix} y_{1}\\ y_{2} \end{pmatrix}=\begin{pmatrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{pmatrix}\begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix}=Ax

        当p=3时同样有直观的几何展示。

        由于y^{'}y=(Ax)^{'}(Ax)=x^{'}A^{'}Ax=x^{'}x,故在新旧坐标下,该点到原点的距离保持不变。

4.矩阵的分块

(1)定义

        设A=(a_{ij})_{p*q},将它分成四块,表示成

A=\begin{pmatrix} A_{11} &A_{12} \\ A_{21} & A_{22} \end{pmatrix}

其中A_{11}:k*l,A_{12}:k*(q-l),A_{21}:(p-k)*l,A_{22}:(p-k)*(q-l)

(2)运算

  • A,B有相同的分块,则A+B=\begin{pmatrix} A_{11}+B_{11} &A_{12}+B_{12} \\ A_{21}+B_{21}&A_{22}+B_{22} \end{pmatrix}
  • C=(c_{ij})_{q*r},分成C=\begin{pmatrix} C_{11} &C_{12} \\ C_{21} &C_{22} \end{pmatrix}.C_{11}:l*m;C_{12}:l*(r-m),则有

AC=\begin{pmatrix} A_{11} &A_{12} \\ A_{21} &A_{22} \end{pmatrix}\begin{pmatrix} C_{11} &C_{12} \\ C_{21} &C_{22} \end{pmatrix}=\begin{pmatrix} A_{11}C_{11}+A_{12}C_{21} &A_{11}C_{12}+A_{12}C_{22} \\ A_{21}C_{11}+A_{22}C_{21}& A_{21}C_{12}+A_{22}C_{22} \end{pmatrix}

(3)【例】

        用矩阵分块方法证明正交矩阵A:p*pp个列向量和p个行向量都是一组正交单位向量。

{\color{Blue} proof:}

将矩阵A分别按列向量和行向量分块,并记A=(a_{1},a_{2},\cdots,a_{p})=\begin{pmatrix} a_{(1)}^{'}\\ a_{(2)}^{'}\\ \vdots \\ a_{(p)}^{'} \end{pmatrix}。由A^{'}A=I,得

\begin{pmatrix} a_{1}^{'}\\ a_{2}^{'}\\ \vdots \\ a_{p}^{'} \end{pmatrix}(a_{1},a_{2},\cdots,a_{p})=I\Rightarrow \begin{pmatrix} a_{1}^{'}a_{1} & a_{1}^{'}a_{2} & \cdots &a_{1}^{'}a_{p} \\ a_{2}^{'}a_{1} & a_{2}^{'}a_{2} &\cdots & a_{2}^{'}a_{p}\\ \vdots & \vdots & & \vdots \\ a_{p}^{'}a_{1} &a_{p}^{'}a_{2} & \cdots & a_{p}^{'}a_{p} \end{pmatrix}=\begin{pmatrix} 1 & 0 & \cdots &0 \\ 0 & 1& \cdots & 0\\ \vdots & \vdots & &\vdots \\ 0&0 & \cdots & 1 \end{pmatrix}

故有a_{i}^{'}a_{j}=\left\{\begin{matrix} 1,i=j\\ 0,1\leqslant i\neq j\leqslant p \end{matrix}\right. ,即a_{1},a_{2},\cdots,a_{p}为一组正交单位向量。同理,由AA^{'}=I可证a_{(1)},a_{(2)},\cdots,a_{(p)}也是一组正交单位向量。

三、行列式

1.定义

        p阶方阵A=(a_{ij})_{p*p}得行列式定义为\left | A \right |=\sum_{j_{1}j_{2}\cdots j_{p}}(-1)^{\tau (j_{1}j_{2}\cdots j_{p})}a_{1j_{1}}a_{2j_{2}}\cdots a_{pj_{p}},这里\sum_{j_{1}j_{2}\cdots j_{p}}表示对1,2,\cdots,p的所有排列求和,\tau (j_{1}j_{2}\cdots j_{p})是排列j_{1}j_{2}\cdots j_{p}中逆序的总数,称它为这个排列的逆序数,一个逆序是指在一个排列中一对数的前后位置与大小顺序相反,即前面的数大于后面的数。例如\tau \left ( 3124 \right )=1+\tau (1342)=3+\tau (1234)=3

2.基本性质

  • A的某行(或列)为零,则\left | A \right |=0
  • \left | A^{'} \right |=\left | A \right |
  • 若将A的某一行(或列)乘以常数c,则所得矩阵的行列式为c\left | A \right |
  • A是一个p阶方阵,c为一常数,则\left | cA \right |=c^p\left | A \right |
  • 互换A的任意两行(或列),则行列式符号改变
  • A的某两行(或列)相同,则行列式为零
  • 若将A的某一行(或列)的倍数加到另一行(或列),则所得行列式不变
  • A的某一行(或列)是其他一些行(或列)的线性组合,则行列式为零
  • A为上三角矩阵或下三角矩阵或对角矩阵,则\left | A \right |=\prod_{i=1}^{p}a_{ii}
  • A,B均为p阶方阵,则\left | AB \right |=\left | A \right |\left | B \right |
  • \left |AA^{'} \right |\geqslant 0
  • A,B都是方阵,则\begin{vmatrix} A &C \\ 0 & B \end{vmatrix}=\begin{vmatrix} A &0 \\ C & B \end{vmatrix}=\left | A \right |\left | B \right |
  • A:p*q,B:q*p\Rightarrow \left | I_{p}+AB \right |=\left | I_{q}+BA \right |;设x,y为两个p维向量,则\left | I_{p}+xy^{'} \right |=1+y^{'}x

 {\color{Blue} proof:}

\begin{pmatrix} I_{p} &A \\ 0& I_{q} \end{pmatrix}\begin{pmatrix} I_{p} & -A\\ B&I_{q} \end{pmatrix}=\begin{pmatrix} I_{p}+AB &0 \\ B & I_{q} \end{pmatrix}

\begin{pmatrix} I_{p} &0 \\ -B& I_{q}\end{pmatrix}\begin{pmatrix} I_{p} & -A\\ B&I_{q} \end{pmatrix}=\begin{pmatrix} I_{p} &-A \\0&I_{q}+AB \end{pmatrix}

上述两个等式两边各取行列式,故得\left | I_{p}+AB \right |=\left | I_{q}+BA \right |

3.代数余子式

        设Ap阶方阵,将其元素a_{ij}所在得第i行与第j列划去之后所得(p-1)阶矩阵的行列式,称为元素a_{ij}的余子式,记为M_{ij}A_{ij}=(-1)^{i+j}M_{ij}称为元素a_{ij}的代数余子式。

        \left\{\begin{matrix} \left | A \right |=\sum_{i=1}^{p}a_{ij}A_{ij}=\sum_{j=1}^{p}a_{ij}A_{ij}\\ \sum_{j=1}^{p}a_{kj}A_{ij}=0(k\neq i)\\ \sum_{i=1}^{p}a_{ik}A_{ij}=0(k\neq j) \end{matrix}\right.

四、矩阵的逆

1.定义

  • 若方阵A满足\left | A \right |\neq 0,则称A非退化矩阵;若A=0,则称A退化矩阵
  • A=(a_{ij})是一非退化方阵,若方阵C满足AC=I,则称CA的逆矩阵,记为C=A^{-1}A^{-1}必是一个非退化矩阵。令B^{'}=\frac{A_{ij}}{\left | A \right |},其中A_{ij}a_{ij}的代数余子式,则容易验证AB=BA=I。由于C=BAC=B,因此A^{-1}是唯一的,且\left (A^{-1} \right )^{-1}=A

2.基本性质

  • AA^{-1}=A^{-1}A=I
  • (A^{'})^{-1}=(A^{-1})^{'}
  • A,C均为p阶非退化方阵,则(AC)^{-1}=C^{-1}A^{-1}
  • \left | A^{-1} \right |=\left | A \right |^{-1}
  • A为正交矩阵,则A^{-1}=A^{'}
  • A=diag(a_{11},a_{22},\cdots,a_{pp})非退化(即a_{ii}\neq 0,i=1,2,\cdots,p),则

A^{-1}=diag(a_{11}^{-1},a_{22}^{-1},\cdots,a_{pp}^{-1})

  • A,B为非退化方阵,则\begin{pmatrix} A &0 \\ 0 & B \end{pmatrix}^{-1}=\begin{pmatrix} A^{-1} &0 \\ 0 & B^{-1} \end{pmatrix} 

五、矩阵的秩

1.相关定义

  • 一组同维向量a_{1},a_{2},\cdots,a_{n},若存在不全为0的常数c_{1},c_{2},\cdots,c_{n},使得c_{1}a_{1}+c_{2}a_{2}+\cdots+c_{n}a_{n}=0,则称这组向量线性相关,否则称为线性无关
  • 矩阵A的线性无关行向量的最大数目称为行秩,其线性无关列向量的最大数目称为列秩。矩阵的行秩和列秩必相等,故统一将其称为矩阵A,记作rank(A)

2.基本性质

  • rank(A)=0\Leftrightarrow A=0
  • A:p*q(A\neq 0),则1\leqslant rank(A)\leqslant min\left \{ p,q \right \}(若rank(A)=p,则称A为行满秩的;若rank(A)=q,则称A为列满秩的)
  • rank(A^{'})=rank(A)
  • rank\begin{pmatrix} A &0 \\ 0& B \end{pmatrix}=rank\begin{pmatrix} 0 &A \\ 0& B \end{pmatrix}=rank(A)+rank(B)
  • rank(A,B)\leqslant min\left \{ rank(A),rank(B) \right \}
  • A,C为非退化矩阵,则rank(ABC)=rank(B)
  • p阶方阵A是非退化的,当且仅当rank(A)=p(称作A满秩)
  • rank(AA^{'})=rank(A^{'}A)=rank(A)

六、特征值、特征向量

1.相关定义

  • Ap阶方阵,若对于一个数\lambda,存在一个p维非零向量x,使得Ax=\lambda x,则称\lambdaA的一个特征值或特征根,而称xA的属于特征值\lambda的一个特征向量
  • 依该定义有,(A-\lambda I)x=0(x\neq 0)\Rightarrow\left | A-\lambda I \right |=0\left | A-\lambda I \right |\lambdap次多项式,称为特征多项式。上式有p个根(可能有重根),记作\lambda _{1},\lambda _{2},\cdots,\lambda _{p},它们可能是实数,也可能是复数(虽然A是实数矩阵)。反过来,若\lambda _{i}是上式的一个根,则A-\lambda _{i}I为退化矩阵,故存在一个p维非零向量x_{i},使得(A-\lambda _{i}I)x_{i}=0,即\lambda _{i}A的一个特征值,而x_{i}是相应的特征向量。今后,一般取x_{i}为单位向量,即满足x_{i}^{'}x_{i}=1

2.基本性质

  • A,A^{'}有相同的特征值
  • A:p*q;B:q*p\Rightarrow AB,BA有相同的非零特征值

  •  A,B:p*p\Rightarrow AB,BA有完全相同的特征值

  • A为是对称矩阵,则A的特征值全为实数,p个特征值按大小依次表示为

\lambda _{1}\geqslant \lambda _{2}\geqslant \cdots\geqslant \lambda _{p}

\lambda _{i}\neq \lambda _{j},则相应的特征向量x_{i},x_{j}必正交,即x_{i}^{'}x_{j}=0

  • A=diag(a_{11},a_{22},\cdots,a_{pp}),则a_{11},a_{2},\cdots,a_{pp}Ap个特征值,相应的特征向量分别为e_{1}=(1,0,\cdots,0)^{'},e_{2}=(0,1,\cdots,0)^{'},\cdots,e_{p}=(0,0,\cdots,1)^{'}

  • \left | A \right |=\prod_{i=1}^{p}\lambda _{i},即A的行列式等于其特征值的乘积。可见,A为非退化矩阵,当且仅当A的特征值均不为0;A为退化矩阵,当且仅当A至少有一个特征值为0。

  •  若Ap阶对称矩阵,则存在正交矩阵T及对角矩阵\Lambda =diag(\lambda _{1},\lambda _{2},\cdots,\lambda _{p}),使得A=T\Lambda T^{'}称之为A的谱分解。

{\color{Blue} proof:}

{\color{Blue} A=T\Lambda T^{'}\Leftrightarrow AT=T\Lambda } 

T按列向量分块,并记作T=\left ( t_{1},t_{2},\cdots,t_{p} \right ),于是有

(At_{1},At_{2},\cdots,At_{p})=\left ( \lambda _{1}t_{1}, \lambda _{2}t_{2},\cdots, \lambda _{p}t_{p} \right )\Rightarrow At_{i}=\lambda _{i}t_{i} ,i=1,2,\cdots,p 

这表明\lambda _{1},\lambda _{2},\cdots,\lambda _{p}Ap个特征值,而t_{1},t_{2},\cdots,t_{p}为相应的(一组正交单位)特征向量。

{\color{Blue} A=T\Lambda T^{'}=(t_{1},t_{2},\cdots,t_{p})\begin{pmatrix} \lambda _{1} & & & \\ & \lambda _{2} & & \\ & & \lambda _{3}& \\ & & & \lambda _{4} \end{pmatrix}\begin{pmatrix} t_{1}^{'}\\ t_{2}^{'}\\ \vdots \\ t_{p}^{'} \end{pmatrix}=\sum_{i=1}^{p}\lambda _{i}t_{i}t_{i}^{'}} 

  • Ap*q实数矩阵,则存在p阶正交矩阵Uq阶正交矩阵V,使得A=U\Lambda V^{'},其中\Lambda(i,i)元素\lambda _{i}\geqslant 0,i=1,2,\cdots,min(p,q),其他元素均为零。正数\lambda _{i}称为A的奇异值,上述分解式称为奇异值分解

七、矩阵的迹

1.定义

        设Ap阶方阵,则他的对角线元素之和称为A的迹,记作tr(A),即

tr(A)=a_{11}+a_{22}+\cdots+a_{pp}

2.基本性质

  •  tr(AB)=tr(BA)\Rightarrow tr(ab^{'})=b^{'}a
  • tr(A)=tr(A^{'})
  • tr(A+B)=tr(A)+tr(B)
  • tr(\sum_{i=1}^{k}A_{i})=\sum_{i=1}^{k}tr(A_{i})
  • A=(a_{ij})_{p*q}\Rightarrow tr(A^{'}A)=tr(AA^{'})=\sum_{i=1}^{p}\sum_{j=1}^{q}a_{ij}^2
  • \lambda _{1},\lambda _{2},\cdots,\lambda _{p}为方阵A的特征值,则tr(A)=\lambda _{1}+\lambda _{2}+\cdots+\lambda _{p}
  • A为投影矩阵,则tr(A)=rank(A)

八、正定矩阵和非负定矩阵

1.定义

  • Ap阶对称矩阵,x是一p维向量,则x^{'}Ax称为A的二次型
  • 若对一切x\neq 0,有x^{'}Ax>0,则称A为正定矩阵,记作A>0
  • 若对一切,有x^{'}Ax\geqslant 0,则称A为非负定矩阵,记作A\geqslant 0
  • 对非负定矩阵A,BA>B\Leftrightarrow A-B>0;A\geqslant B\Leftrightarrow A-B\geqslant 0

2.基本性质

  • A是对称矩阵,则A是正定(或非负定)矩阵,当且仅当A的所有特征值均为正(或非负)
  • A\geqslant 0,则A的秩等于A的正特征值个数
  • A>0\Rightarrow A^{-1}>0
  • A\geqslant 0,则A>0\Leftrightarrow \left | A \right |\neq 0
  • A>0(A\geqslant 0)\Rightarrow \left | A \right |> 0(\left | A \right |\geqslant 0)
  • BB^{'}>0,对一切矩阵B成立
  • A>0(\geqslant 0),则存在A^{\frac{1}{2}}>0(\geqslant 0),使得A=A^{\frac{1}{2}}A^{\frac{1}{2}}A^{\frac{1}{2}}称为A平方根矩阵
  • A\geqslant 0p阶秩为r的矩阵,则存在一个秩为r(即列满秩)的p*r矩阵B,使得A=BB^{'}

九、特征值的极值问题

1.柯西-许瓦兹Cauchy-Schwarz不等式

        设x,y是两个p维向量,则{\color{Red} (x^{'}y)^2\leqslant (x^{'}x)(y^{'}y)},等号成立当且仅当y=cx(x=cy),这里的c为常数。

2.推广的柯西-许瓦兹Cauchy-Schwarz不等式

        设B>0,则(x^{'}y)^2\leqslant (x^{'}Bx)(y^{'}B^{-1}y),等号成立当且仅当x=cB^{-1}y(y=cBx),这里的c为常数。

3.特征值的极值问题

(1)

(2)


  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值