目录
一、定义
矩阵:
维列向量:
维行向量:
- 向量
的长度:
- 单位向量:
- 零矩阵:若
的所有元素全为零,则称A为零矩阵,记作
- 若
,则称
为
阶方阵,
称为它的对角线元素,其他元素称为非对角线元素
- 若方阵
的对角线下方的元素全为零,则称
为上三角矩阵
-
若方阵
的对角线上方的元素全为零,则称
为下三角矩阵
-
若方阵
的所有非对角线元素全为零,则称
为对角矩阵,简记为
- 若
阶对角矩阵
的所有
个对角线元素均为1,则称
为
阶单位矩阵,记作
- 若将矩阵
的行与列互换,则得到的矩阵称为
的转置,记作
。
- 若方阵
满足
,则称
为对角矩阵。
- 若方阵
满足
,则称
为幂等矩阵。
- 若方阵
满足
,则称
为投影矩阵。
二、矩阵的运算
1.相关运算
- 若
,则
- 若
为一常数,则它与
的积定义为
2.运算规律
3.正交矩阵
(1)定义
若两个维向量
满足
,则称
正交。几何上,正交向量之间相互垂直。
若方阵满足
,则称
为正交矩阵。
显然,,即
的
个行向量为单位向量;
,即
的
个行向量相互正交。又从
得,
即的
个列向量也相互正交。
(2)几何意义
将维向量
看成是在
中的一个点,则
的各分量是该点在相应各坐标轴上的坐标。正交矩阵的行列式非1即-1,若
,则正交变换
意味着对原
维坐标系作一刚性旋转(或称为正交旋转),
的各分量正是该点在新坐标下的坐标;若
,则包含了一个反射的坐标轴。
当时,按逆时针方向将直角坐标系
旋转一个角度
,所得新坐标
与原坐标之间的变换为
。
当时同样有直观的几何展示。
由于,故在新旧坐标下,该点到原点的距离保持不变。
4.矩阵的分块
(1)定义
设