【应用多元统计分析】CH1 矩阵代数

本文详细介绍了线性代数的基本概念,包括矩阵的定义、运算、正交矩阵、行列式、逆矩阵、秩、特征值与特征向量,以及它们在几何变换、向量空间和数据处理中的作用。同时,探讨了矩阵的迹、正定矩阵和非负定矩阵的特性,并提出了特征值的极值问题。内容深入浅出,适合初学者理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、定义

二、矩阵的运算

1.相关运算

2.运算规律

3.正交矩阵

(1)定义

(2)几何意义

4.矩阵的分块

(1)定义

(2)运算

(3)【例】

三、行列式

1.定义

2.基本性质

3.代数余子式

四、矩阵的逆

1.定义

2.基本性质

五、矩阵的秩

1.相关定义

2.基本性质

六、特征值、特征向量

1.相关定义

2.基本性质

七、矩阵的迹

1.定义

2.基本性质

八、正定矩阵和非负定矩阵

1.定义

2.基本性质

九、特征值的极值问题

1.柯西-许瓦兹不等式

2.推广的柯西-许瓦兹​编辑不等式

3.特征值的极值问题

(1)​

(2)


一、定义

  • p*q矩阵:A=\begin{pmatrix} a_{11} &a_{12} & \cdots & a_{1q}\\ a_{21} &a_{22} & \cdots & a_{2q}\\ \vdots & \vdots & & \vdots \\ a_{p1} &a_{p2} & \cdots & a_{pq} \end{pmatrix}_{p*q}
  • p维列向量:a=\begin{pmatrix} a_{1}\\ a_{2}\\ \vdots \\ a_{p} \end{pmatrix}
  • q维行向量:a^{'}=(a_{1},a_{2},\cdots,a_{q})
  • 向量a长度\left \| a \right \|=\sqrt{a^{'}a}=\sqrt{a_{1}^2+\cdots,a_{p}^2}
  • 单位向量\left \| a \right \|=1
  • 零矩阵:若A的所有元素全为零,则称A为零矩阵,记作A=0_{pq}/A=0
  • p=q,则称Ap方阵a_{11},a_{22},\cdots,a_{pp}称为它的对角线元素,其他元素称为非对角线元素
  • 若方阵A的对角线下方的元素全为零,则称A上三角矩阵
  • 若方阵A的对角线上方的元素全为零,则称A下三角矩阵

  • 若方阵A的所有非对角线元素全为零,则称A对角矩阵,简记为

A=diag(a_{11},a_{22},\cdots,a_{pp})

  • p阶对角矩阵A的所有p个对角线元素均为1,则称Ap阶单位矩阵,记作A=I_{p}/A=I
  • 若将矩阵A的行与列互换,则得到的矩阵称为A的转置,记作A^{'}
  • 若方阵A满足A=A^{'},则称A对角矩阵
  • 若方阵A满足A^2=A,则称A幂等矩阵
  •  若方阵A满足A^2=A,A^{'}=A,则称A投影矩阵

二、矩阵的运算

1.相关运算

  • A=(a_{ij})_{p*q},B=(b_{ij})_{p*q},则A+B=(a_{ij}+b_{ij})_{p*q}
  • c为一常数,则它与A的积定义为cA=(ca_{ij})_{p*q}
  • A=(a_{ij})_{p*q},B=(b_{ij})_{q*r}\Rightarrow AB=\left ( \sum_{k=1}^{q}a_{ik}b_{kj} \right )_{p*r}

2.运算规律

  • (A+B)^{'}=A^{'}+B^{'}
  • (AB)^{'}=B^{'}A^{'}
  • A(B_{1}+B_{2})=AB_{1}+AB_{2}
  • A\left ( \sum_{i=1}^{k}B_{i} \right )=\sum_{i=1}^{k}AB_{i}
  • c(A+B)=cA+cB

3.正交矩阵

(1)定义

        若两个p维向量a,b满足a^{'}b=a_{1}b_{1}+a_{2}b_{2}+\cdots+a_{p}b_{p}=0,则称a,b正交。几何上,正交向量之间相互垂直。

        若方阵A满足AA^{'}=I,则称A为正交矩阵。

        显然,\sum_{j=1}^{p}a_{ij}^2=1,i=1,2,\cdots,p,即Ap个行向量为单位向量;\sum_{j=1}^{p}a_{ij}a_{kj}=0,i\neq k,即Ap个行向量相互正交。又从A^{'}A=I得,

\sum_{i=1}^{p}a_{ij}^2=1,j=1,2,\cdots,p;\sum_{i=1}^{p}a_{ij}a_{ki}=0,j\neq k

Ap个列向量也相互正交。

(2)几何意义

        将p维向量x看成是在R^{p}中的一个点,则x的各分量是该点在相应各坐标轴上的坐标。正交矩阵的行列式非1即-1,若\left | A \right |=1,则正交变换y=Ax意味着对原p维坐标系作一刚性旋转(或称为正交旋转),y的各分量正是该点在新坐标下的坐标;若\left | A \right |=-1,则包含了一个反射的坐标轴。

        当p=2时,按逆时针方向将直角坐标系x_{1}Ox_{2}旋转一个角度\theta,所得新坐标y_{1}Oy_{2}与原坐标之间的变换为y=\begin{pmatrix} y_{1}\\ y_{2} \end{pmatrix}=\begin{pmatrix} cos\theta &sin\theta \\ -sin\theta & cos\theta \end{pmatrix}\begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix}=Ax

        当p=3时同样有直观的几何展示。

        由于y^{'}y=(Ax)^{'}(Ax)=x^{'}A^{'}Ax=x^{'}x,故在新旧坐标下,该点到原点的距离保持不变。

4.矩阵的分块

(1)定义

        设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值