【统计模型】产品磨损老化单因素方差分析

目录

产品磨损老化单因素方差分析

一、研究目的

二、数据来源和相关说明

三、描述性分析

四、数学建模

五、结论与建议

5.1 结论

5.2建议

六、代码


产品磨损老化单因素方差分析

摘要 本文通过描述性统计分析与单因素方差分析,分析国内外工厂某产品磨损老化实验数据,得出如下结论:四个工厂之间、国内外之间、国内各工厂之间均存在显著性差异;工厂A3与A4、A2与A4、A1与A3、A1与A2之间也存在显著性差异。即国内与国外,国内之间产品质量参差不齐。四个工厂之间,变化率均值由低到高分别是A4、A1、A3和A2,即可以认为国外产品质量最好,国内工厂乙质量最差。基于此,本文提出了加强质量监控与检测标准以提高国内工厂产品质量整体水平的建议。

一、研究目的

      有四种产品,分别来自国内甲、乙、丙三个工厂与国外同类产品,现从各厂分别取10,6,6和2个产品做300小时连续磨损老化检验,得到变化率。通过分析国内外产品质量,对国内外产品优化提出建议。

二、数据来源和相关说明

      数据来源于300小时连续磨损老化试验数据,具体数据如表2-1所示。

表 2-1  300小时连续磨损老化实验数据

产品

老化率

A1

20 18 19 17 15 16 13 18 22 17

A2

26 19 26 28 23 25

A3

24 25 18 22 27 24

A4

12 14

【注】A1、A2、A3、A4分别代表国内甲、乙、丙三个国内工厂与国外同类产品

三、描述性分析

      为了对数据有更直观地了解,本文首先进行了描述性统计分析,绘制了各个工厂产品磨损老化变化率的直方图与散点图,结果如图3-1所示。

      由图3-1可以得出:四个工厂产品变化率均值由低到高分别是A4、A1、A3和A2,即可以认为国外产品质量最好,国内工厂甲次之,其次是工厂丙,工厂乙质量最差。有箱线图可以看出,各个工厂生产的产品变化率差别较大,可能存在显著性差异。

图 3-1  直方图与散点图

四、数学建模

      为了分析国内外产品、国内各产品与各个工厂之间的产品是否存在显著性差异,本文用R语言进行了单因素方差分析。

      进行单因素方差分析前,首先对数据的正态性与方差齐性进行检验,本文采用Shapiro检验和bartlett检验,具体检验结果如4-1所示。两个检验的P值均>0.05,即在显著性水平α=0.05 下都通过了显著性检验。

表 4-1  正态性与方差齐性检验

 

正态性检验

方差齐性检验

p-value

0.4163

0.8326

      其次,对四个工厂的产品进行单因素方差分析。

Yik=μi+εik,i=1,2,3,4;k=1,2,⋯,ni

即检验μ1=μ2=μ3=μ4 是否成立,检验结果如表4-2所示。由P值<0.05可以得出,在显著性水平α=0.05 下拒绝原假设,即认为四个工厂的产品存在显著性差异。

表 4-2  四个工厂间的单因素方差分析

 

Df

Sum Sq

Mean Sq

F value

Pr(>F)

factory

3

346

115.33

14.66

2.79e-05***

Residuals

20

157.3

7.87

 

 

      第三,对国内外产品的差异性进行检验。合并甲、乙、丙三个工厂的产品磨损数据,进而与国外工厂A4的数据进行单因素方差分析,分析结果如表4-3所示。由P值=0.0169<0.05可以得出,在显著性水平α=0.05 下拒绝原假设,即认为国内外的产品也存在显著性差异。

表 4-3  国内外产品单因素方差分析

 

Df

Sum Sq

Mean Sq

F value

Pr(>F)

factory

1

117.3

117.33

6.687

0.0169*

Residuals

22

386

17.55

 

 

      第四,对国内甲、乙、丙工场的产品进行单因素方差分析,分析结果如表4-4所示。由P值=0.000184<0.05可以得出,在显著性水平α=0.05 下拒绝原假设,即认为国内产品之间也存在显著性差异。

表 4-4  国内产品单因素方差分析

 

Df

Sum Sq

Mean Sq

F value

Pr(>F)

factory

2

228.7

114.33

13.98

0.000184***

Residuals

19

155.3

8.18

 

 

      第五,对四个工厂的产品进行两两比较,进行进一步分析。分析结果如图4-1所示。六组中,只有A4-A1与A3-A2两组的95%置信区间包含0,因而认为只有这两组之间不存在显著性差异,其他四组之间均存在显著性差异。

图 4-1  两两比较

五、结论与建议

5.1 结论

      综上所述,四个工厂之间、国内外之间、国内各工厂之间均存在显著性差异;工厂A3与A4、A2与A4、A1与A3、A1与A2之间存在显著性差异。即国内与国外,国内之间产品质量参差不齐。四个工厂之间,变化率均值由低到高分别是A4、A1、A3和A2,即可以认为国外产品质量最好,国内工厂乙质量最差。

5.2建议

      国外产品质量要高于国内质量,因而国内工厂要考虑加强质量监控,提高产品质量。同时政府要加强对各企业的监控,提高检测标准,提高国内企业产品质量整体水平。

六、代码

c=read.csv("D:/个人成长/学业/课程/大三下课程/统计模型/作业/第二次作业/two.csv",header=1)
c

#检验正态性和方差齐性
library(car)
shapiro.test(c$rate)
bartlett.test(rate~factory, data = c)

par(mfrow=c(1,2))
boxplot(rate~factory,c,ylab="变化率",xlab="工厂")
stripchart(rate ~ factory, c, vertical=TRUE, method="stack",xlab="工厂",ylab="变化率")
fit3=aov(rate~factory,data=c)
summary(fit3)

par(mfrow=c(1,1))
d=read.csv("D:/个人成长/学业/课程/大三下课程/统计模型/作业/第二次作业/three.csv",header=1)
d
boxplot(rate~factory,d,ylab="变化率",xlab="工厂",names=c("国内","国外"))
fit4=aov(rate~factory,data=d)
summary(fit4)

e=read.csv("D:/个人成长/学业/课程/大三下课程/统计模型/作业/第二次作业/four.csv",header=1)
e
fit5=aov(rate~factory,data=e)
summary(fit5)

##方差分析后,多重比较,继续探寻两两分组间的差异
#Tukey HSD 检验
tuk=TukeyHSD(fit3, conf.level = 0.95)
plot(tuk)
tuk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值