循环神经网络

循环神经网络(RNN)是一种处理序列数据的神经网络,以其记忆特性著称,能处理前一时刻的输入并保持网络对历史信息的记忆。然而,RNN存在梯度消失和梯度爆炸问题,影响其训练效果。
摘要由CSDN通过智能技术生成

一、循环神经网络

循环神经网络RNN)一般是指时间递归神经网络而非结构递归神经网络,是一类用于处理序列数据的神经网络。

在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。

循环神经网络具有特别好的记忆特性,能够将记忆内容应用到当前情景下

RNN与CNN不同的是: 它不仅考虑前一时刻的输入,而且赋予了网络对前面的内容的一种记忆功能

RNN 和其他神经网络唯一的区别在于:由于它每个时刻的节点都可能有一个输出,所以 RNN 的总损失为所有时刻(或部分时刻)上的损失和

二、循环神经网络的基本结构

是将网络的输出保存在一个记忆单元中,这个记忆单元和下一次的输入一起进入神经网络中。

20210220095620855.png (795×319)

 

二、RNN存在的问题

梯度消失和梯度爆炸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值