一、循环神经网络
循环神经网络(RNN)一般是指时间递归神经网络而非结构递归神经网络,是一类用于处理序列数据的神经网络。
在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。
循环神经网络具有特别好的记忆特性,能够将记忆内容应用到当前情景下
RNN与CNN不同的是: 它不仅考虑前一时刻的输入,而且赋予了网络对前面的内容的一种记忆功能。
RNN 和其他神经网络唯一的区别在于:由于它每个时刻的节点都可能有一个输出,所以 RNN 的总损失为所有时刻(或部分时刻)上的损失和
二、循环神经网络的基本结构
是将网络的输出保存在一个记忆单元中,这个记忆单元和下一次的输入一起进入神经网络中。