题面:
题目描述
路边的地区被分割成块,并被编号成 1,2,…,n。每个部分为一个单位尺寸大小并最多可种一棵树。
每个居民都想在门前种些树,并指定了三个号码 b,e,t。这三个数表示该居民想在地区 b 和 e 之间(包括 b 和 e)种至少 t 棵树。
居民们想种树的各自区域可以交叉。你的任务是求出能满足所有要求的最少的树的数量。
输入格式
输入的第一行是一个整数,代表区域的个数 n。
输入的第二行是一个整数,代表房子个数 h。
第 3 到第 (h + 2) 行,每行三个整数,第 (i + 2) 行的整数依次为 bi, ei, ti,代表第 i 个居民想在 bi 和 ei 之间种至少 ti 棵树。
输出格式
输出一行一个整数,代表最少的树木个数。
思路:贪心
我们可以从右端点最靠左的线段开始,当遇到树木个数没有达到ti,就从最末端没树的地方种(ti-现有的个数)棵,就可以尽量满足后面的线段。
代码如下:
#include<bits/stdc++.h>
using namespace std;
struct node
{
long long left,right,num,ans;
}a[30010];
long long n,ans2=0,m;
bool b[30010];
inline bool cmp(node x,node y)
{
return x.right<y.right;
}
int main()
{
cin>>m>>n;
for(int i=1; i<=n; i++)
{
cin>>a[i].left>>a[i].right>>a[i].num;
}
sort(a+1,a+n+1,cmp);
for(int i=1; i<=n; i++)
{
for(int j=a[i].left; j<=a[i].right; j++)
{
if(b[j])
{
a[i].ans++;
}
}
if(a[i].ans>=a[i].num)
{
continue;
}
for(int k=a[i].right; k>=a[i].left; k--)
{
if(a[i].ans==a[i].num)
{
break;
}
if(b[k]==0)
{
b[k]=1;
a[i].ans++;
ans2++;
}
}
}
cout<<ans2;
return 0;
}