P2879 [USACO07JAN]Tallest Cow

本文介绍了USACO竞赛中的一道题目,题号为P2879,主题是[Tallest Cow]。题目要求在已知最高牛的编号P和身高H,以及牛群中能相互看见的M对关系的情况下,求每头牛的最大可能身高。解决方案包括三种思路,分别采用暴力递减、差分数组、以及使用map和vector数据结构来处理关系,以求得每头牛的最大身高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

题目描述

有 N 头牛站成一行,被编队为 1、2、3…N,每头牛的身高都为整数。

当且仅当两头牛中间的牛身高都比它们矮时,两头牛方可看到对方。

现在,我们只知道其中最高的牛是第 P 头,它的身高是 H ,剩余牛的身高未知。

但是,我们还知道这群牛之中存在着 M 对关系,每对关系都指明了某两头牛 A 和 B 可以相互看见。

求每头牛的身高的最大可能值是多少。

输入格式

第一行输入整数 N,P,H,M,数据用空格隔开。

接下来{M}M行,每行输出两个整数 A 和 B ,代表牛 A 和牛 B 可以相互看见,数据用空格隔开。

输出格式

一共输出 N 行数据,每行输出一个整数。

第 i 行输出的整数代表第 i 头牛可能的最大身高。

思路:

这道题可以用三种解法.

第一种(1):

这一种是最暴力的一种,我们可以直接把高度都设成 H。如果A牛要看见B牛,就把A牛到B牛之间的牛高度减一,或者也可以用差分数组实现。考虑到可能重复,要去重。

代码如下(1):

#include<bits/stdc++.h>
using namespace std;
int a[10010],b[10010],c[10010][3],d[10010
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值